
Introduction to Stochastic Calculus
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Syllabus

The main session will focus on getting an intuitive grasp of stochastic calculus. The main reference here is Oksendal
[11], abbreviated as “Ok” below.

Week # Date Topic Reading
1 05/20 - 05/24 Preliminaries Ok Chapter 1 & 2
2 05/27 - 05/31 The Ito integral Ok Chapter 3
3 06/03 - 06/07 Ito formula and martingale representation Ok Chapter 4
4 06/10 - 06/14 Stochastic differential equations Ok Chapter 5
5 06/17 - 06/21 Properties of diffusion processes Ok Chapter 7
6 06/24 - 06/28 Feynman-Kac and the martingale problem Ok Chapter 8.1-8.4
7 07/01 - 07/05 Random time-change and Girsanov Ok Chapter 8.5-8.6
8 07/08 - 07/12 Boundary value problems Ok Chapter 9
9 07/15 - 07/19 Optimal stopping Ok Chapter 10
10 07/22 - 07/26 Stochastic control Ok Chapter 11
11 07/29 - 08/02 –

12 and on find selected topics of interest?

The auxiliary section will try to establish an in-depth treatment of stochastic calculus. The main reference here
will be Le Gall [10], abbreviated as “LG” below.
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Week # Date Topic Reading
1 05/20 - 05/24 Gaussian spaces and Brownian motion LG Chapter 1 & 2
2 05/27 - 05/31 martingales LG Chapter 3
3 06/03 - 06/07 Continuous semimartingales LG Chapter 4
4 06/10 - 06/14 – –
5 06/17 - 06/21 Integration and Ito’s formula LG Chapter 5.1-5.3
6 06/24 - 06/28 martingale representation and Girsanov LG Chapter 5.4-5.6
7 07/01 - 07/05 Markov Processes LG Chapter 6
8 07/08 - 07/12 – –
9 07/15 - 07/19 Connections to PDEs LG Chapter 7
10 07/22 - 07/26 Stochastic Differential Equations LG Chapter 8
11 07/29 - 08/02 Local times LG Chapter 9
12 08/05 - 08/09 – –
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1 Existence of Brownian Motion

We want to construct a Gaussian process on R+ = [0,∞) that has independent and stationary increments.

1.1 Via Kolmogorov extension

Theorem 1.1 (Kolmogorov’s extension theorem). For all 𝑡1, . . . , 𝑡𝑘 ∈ T, 𝑘 ∈ N, let 𝜈𝑡1,...,𝑡𝑘 be a probability measure on
R𝑛𝑘 such that

𝜈𝜎 (𝑡1 ),...,𝜎 (𝑡𝑘 ) (𝐹1 × · · · × 𝐹𝑘 ) = 𝜈𝑡1,...,𝑡𝑘 (𝐹𝜎−1 (1) × · · · × 𝐹𝜎−1 (𝑘 ) ) (1.1)

for any permutation 𝜎 and for all 𝑡𝑘+1, ¤,𝑡𝑘+𝑚 ∈ T

𝜈𝑡1,...,𝑡𝑘 (𝐹1, . . . , 𝐹𝑘 ) = 𝜈𝑡1,...,𝑡𝑘 ,𝑡𝑘+1,...,𝑡𝑘+𝑚 (𝐹1, . . . , 𝐹𝑘 ,R𝑛, . . . ,R𝑛). (1.2)

Then, there exists a probability space (Ω, F , P) and process {𝑋𝑡 : Ω → R𝑛}𝑡 ∈T such that it has finite-dimensional
distributions 𝜈𝑡1,...,𝑡𝑘 .

Let T = [0,∞), defining

𝑝 (𝑡, 𝑥,𝑦) = 1
(2𝜋𝑡)−𝑛/2

exp
(
−∥𝑥 − 𝑦∥2

2𝑡

)
, (1.3)

and letting the finite dimensional distribution be

𝜈𝑡1,...,𝑡𝑘 (𝐹1, . . . , 𝐹𝑘 ) =
∫
𝐹1×···×𝐹𝑘

𝑝 (𝑡1, 0, 𝑥1)𝑝 (𝑡2 − 𝑡1, 𝑥1, 𝑥2) . . . 𝑝 (𝑡𝑘 − 𝑡𝑘−1, 𝑥𝑘−1, 𝑥𝑘 )𝑑𝑥1 . . . 𝑑𝑥𝑘 , (1.4)

Kolmogorov’s extension theorem gives us the existence of a process (we call {𝐵𝑡 }𝑡≥0) with such marginals. By
construction, we know that it is a Gaussian process with independent increments. Taking another theorem for
granted, we get continuity of sample paths.

Theorem 1.2 (Kolmogorov’s continuity theorem). Suppose that {𝑋𝑡 }𝑡≥0 satisfies for all 𝑇 > 0, there exist 𝛼, 𝛽, 𝐷 > 0
such that

E |𝑋𝑡 − 𝑋𝑠 |𝛼 ≤ 𝐷 |𝑡 − 𝑠 |1+𝛽 (1.5)

for 0 ≤ 𝑠, 𝑡 ≤ 𝑇 . Then, there exists a {�̃�𝑡 }𝑡≥0 that is continuous version of 𝑋 , i.e., P(𝑋𝑡 = �̃�𝑡 ) = 1 for all 𝑡 ≥ 0, with
a.s. continuous sample paths.

Picking 𝛼 = 2, 𝐷 = 1, 𝛽 = 1 gives the existence of a continuous version.

Definition 1.3 (Canonical BrownianMotion). Let𝐶 [0,∞) be the space of continuous functions onR+. The canonical
Brownian motion, is one such that 𝐵𝑡 is taken to be the coordinate map 𝐵𝑡 (𝑥) = 𝑥𝑡 for 𝑥 ∈ 𝐶 [0,∞).

1.2 Via weak convergence For this subsection, we turn our attention to 𝐶 [0,𝑇 ] for some finite 𝑇 < ∞. Then,
the space equipped with the uniform metric is Polish and we can characterize compactness exactly.

Theorem1.4 (Arzela-Ascoli). A set𝐴 ⊂ 𝐶 [0,𝑇 ] is pre-compact if and only if it is uniformly bounded, i.e., sup𝑥∈𝐴 |𝑥 (0) | <
∞, and uniformly equicontinuous, that is,

lim
𝛿→0

sup
𝑥∈𝐴

𝑤𝑥 (𝛿) = 0 (1.6)

where𝑤𝑥 (𝛿) = sup |𝑠−𝑡 | ≤𝛿 |𝑥𝑠 − 𝑥𝑡 | is the modulus of continuity.

From compactness, we can relate it to tightness of probability measures via Prokhorov.
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Theorem 1.5. The sequence of probability measures (𝑃𝑛)𝑛≥0 is tight if and only if for any 𝜂 > 0, there exists an 𝑎 < ∞
such that

𝑃𝑛 ({𝑥 : |𝑥 (0) | ≥ 𝑎}) ≤ 𝜂 (1.7)

for all 𝑛 and for every 𝜖 > 0,

lim
𝛿→0

lim sup
𝑛→∞

𝑃𝑛 ({𝑥 : 𝑤𝑥 (𝛿) ≥ 𝜖}) = 0. (1.8)

Proof. First, suppose that {𝑃𝑛} is tight. Then, for any fixed 𝜂 > 0, there is a compact 𝐾 such that 𝑃𝑛 (𝐾) > 1 − 𝜂 for
all 𝑛. By Arzela-Ascoli, we have that 𝐾 ⊂ {𝑥 : |𝑥 (0) | ≤ 𝑎} for large enough 𝑎 and 𝐾 ⊂ {𝑥 : 𝑤𝑥 (𝛿) ≤ 𝜖} for small
enough 𝛿 and any 𝜖 . Therefore, the two conditions listed follows.

For the other direction, suppose that we have the two conditions listed. Fix some 𝜂 > 0. By the first condition,
we know that there is an 𝑎 < ∞ such that 𝑃𝑛 (𝐵) ≥ 1 − 𝜂 for all 𝑛 where 𝐵 = {𝑥 : |𝑥 (0) | ≤ 𝑎}. Moreover, for each
𝑘 , choose 𝛿𝑘 such that 𝐵𝑘 = {𝑥 : 𝑤𝑥 (𝛿𝑘 ) < 1/𝑘} and 𝑃𝑛 (𝐵𝑘 ) ≥ 1 − 𝜂/2𝑘 for all 𝑛. Let 𝐾 = cl(𝐵 ∩ ⋂

𝑘 𝐵𝑘 ), then by
Arzela-Ascoli, 𝐾 is compact and {𝑃𝑛} is tight as sup𝑛 𝑃𝑛 (𝐾) ≤ 1 − 3𝜂. □

Then, we can further relate tightness to convergence in finite-dimensional distributions.

Theorem 1.6. Let (𝑃𝑛)𝑛∈N be a sequence of probability measures on (𝐶,B𝐶 ) that is tight. Then, if the finite-dimensional
distributions converge, 𝑃𝑛 → 𝑃 .

Proof. Since (𝑃𝑛)𝑛 is tight, for any subsequence, there is a further subsequence that converges; denote this limit by
𝑃 . If we can show that 𝑃 = 𝑃 , then we would have shown that 𝑃𝑛 → 𝑃 . Abusing notation a little, we will denote the
sub-sub-sequence with subscripts 𝑛.

The proof then follows from the observation that the finite-dimensional sets generates B𝐶 , that is,

B𝐶 = 𝜎
{
𝜋−1
𝑡1,...,𝑡𝑘𝐴 : 𝐴 ∈ BR𝑘

}
. (1.9)

So, by the assumption that 𝑃𝑛𝜋−1
𝑡1,...,𝑡𝑘

→ 𝑃𝜋−1
𝑡1,...,𝑡𝑘

, we have 𝑃 = 𝑃 on a set that generates the 𝜎-algebra, and the proof
is complete. □

Using these weak convergence techniques, wewill construct a tight sequence of measures on𝐶 [0,𝑇 ] that satisfies
the increment properties we want. Let (𝜉𝑘 )𝑘∈N be a sequence of independent standard Gaussians. Let 𝑆𝑛 =

∑𝑛
𝑘=1 𝜉𝑘

be the associated random walk. The sequence of measures (𝑃𝑛) will be the law of the interpolated process 𝑋𝑡 :

𝑋𝑡 =


0 if 𝑡 = 0
𝑆𝑛/

√
𝑛 if 𝑡 = 𝑇 /𝑛

linear interpolation otherwise
(1.10)

Then, we call the convergent limit of (𝑃𝑛) the Wiener measure and we’ve showed the existence of the canonical
Brownian motion (unknowingly). By envoking CLT, we need not have 𝜉𝑘 ’s be Gaussians—this is known as the
Donsker’s theorem.

1.3 ViaHilbert space theory LetH = 𝐿2 (R+,BR+ ,𝑚)where𝑚 is the Lebesguemeasurewith orthonormal basis
{𝑒𝑛}𝑛∈N. Moreover, let (𝑔𝑛)𝑛∈N be independent standard Gaussians defined on some probability space (Ω, F , P). We
will define the collection of random variables {𝑋 (ℎ)}ℎ∈H to be

𝑋 (ℎ) =
∞∑︁
𝑛=1

⟨ℎ, 𝑒𝑛⟩𝑔𝑛 . (1.11)

Then, we can see that these random variables inherited the structure of the Hilbert space, i.e., E𝑋 (ℎ)𝑋 (ℎ′) = ⟨ℎ,ℎ′⟩.
Consequently, E𝑋 (ℎ)2 = ∥ℎ∥2 and𝑋 (ℎ) and𝑋 (ℎ′) are independent if and only if ℎ and ℎ′ are orthogonal. Moreover,
observe that for 𝐹,𝐺 ∈ BR+ with finite measure, we have

E𝑋 (1𝐹 )𝑋1𝐺 = ⟨1𝐹 , 1𝐺 ⟩ =𝑚(𝐹 ∩𝐺). (1.12)

Let’s call 𝐵𝑡 = 𝑋 (1[0,𝑡 ]). Independent increments follow from the disjointness of time intervals. Gaussianity follows
from infinite divisibility and independent increment. The variance E𝐵2𝑡 = 𝑡 by the choice of Lebesgue measure. And
we have Brownian motion.
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1.4 Via multiscale construction Again, we focus on the finite horizon case, in particular, the [0, 1] case. Let
𝛾 be the standard Gaussian, and consider the algorithm:

1. Let 𝐵00 = 0 and 𝐵01 ∼ 𝛾 .

2. For each iteration 𝑛, do:

3. At location 𝑡 = 𝑘2−𝑛 for all 𝑘 = 0, . . . , 2𝑛 ,

(a) If 𝐵𝑛𝑡 already exist (visited in previous iteration), skip!
(b) If not, let 𝑌0 = 𝐵𝑛

𝑘2−(𝑛−1) and 𝑌1 = 𝐵𝑛(𝑘+1)2−(𝑛−1) , and let 𝐵𝑛(2𝑘+1)2−𝑛 = (𝑌0 + 𝑌1)/2 + 2−(𝑛+1)𝜉 where 𝜉 ∼ 𝛾

independently of everything else.

The construction above inherits all independence properties needed and can be used to prove existence using the
help of wavelet-type multi-resolution analysis. The benefit of this construction is that, by showing 𝐵𝑛𝑡 has a uniform
limit almost surely (error estimates + Borel-Cantelli), we get continuity by construction rather than by envoking
God-sent theorems.
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2 Stochastic Differential Equations

From the theory of ordinary differential equations, we know that evolution equations of the type

𝑑𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡 )𝑑𝑡 (2.1)

admits a unique solution when 𝑏 is Lipschitz. The two classic arguments to prove this is: 1) we carry out existence
via compactness arguments of the linear interpolation of Euler approximations and uniqueness via Gronwall, or 2)
iterate the solution (Picard iteration) and show that it is a contraction.

Now, we’re interested in the existence and uniqueness of stochastic differential equations

𝑑𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡 )𝑑𝑡 + 𝜎 (𝑡, 𝑋𝑡 )𝑑𝐵𝑡 , (2.2)

which corresponds to the integral equation

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏 (𝑠, 𝑋𝑠 )𝑑𝑠 +

∫ 𝑡

0
𝜎 (𝑠, 𝑋𝑠 )𝑑𝐵𝑠 . (2.3)

It turns out that similar techniques used for the deterministic case gives existence and uniqueness under similar
smoothness conditions on 𝑏 and 𝜎 . Moreover, we’ll also dive into the caveat that the solution might not be defined
pathwise 𝜔-by-𝜔 , but admits a solution in terms of the law on a potentially different probability space.

2.1 Existence and uniqueness of (strong) solutions

Theorem 2.1 (Existence and uniqueness of strong solutions [11, Theorem 5.2.1]). Let 𝑇 > 0 and consider the SDE in
(2.2) driven by {F𝑡 }𝑡≥0-Brownian motion. Let 𝑏 and 𝜎 be such that for any fixed 𝑡 ∈ [0,𝑇 ],

1. (linear growth) |𝑏 (𝑡, 𝑥) | + |𝜎 (𝑡, 𝑥) | ≤ 𝐶 (1 + |𝑥 |), and

2. (Lipschitz continuous) |𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦) | + |𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦) | ≤ 𝐷 |𝑥 − 𝑦 |.

for 𝑥,𝑦 ∈ R𝑑 , 𝐶, 𝐷 > 0. Let 𝑍 ∈ 𝐿2 (Ω, F , P) be a random variable independent of the Brownian motion. Then, the
SDE with initial conditions 𝑋0 = 𝑍 has a unique solution that is continuous, adapted to the filtration {𝜎𝑍 ∨F𝑡 }𝑡≥0, and
𝑋 · ∈ 𝐿2 (Ω × [0,𝑇 ]).

Proof. We start by proving existence via showing the sequence of processes obtained from the Picard iteration is
Cauchy. Then, using the same estimates, we show uniqueness via Gronwall. Lastly, continuity of the sample paths
is immediate from continuity of Brownian motion and the coefficients.

Existence Let 𝑋 (0) ≡ 𝑋0 and define 𝑋 (𝑘 ) recursively by

𝑋
(𝑘+1)
𝑡 = 𝑋0 +

∫ 𝑡

0
𝑏 (𝑡, 𝑋 (𝑘 )

𝑠 )𝑑𝑠 +
∫ 𝑡

0
𝜎 (𝑠, 𝑋 (𝑘 )

𝑠 )𝑑𝐵𝑠 . (2.4)

Then, using Jensen’s inequality and Itô’s isometry, we can bound the difference between the iterations as

E |𝑋 (𝑘+1)
𝑡 − 𝑋 (𝑘 )

𝑡 |2 = E
(∫ 𝑡

0
𝑏 (𝑠, 𝑋 (𝑘 )

𝑠 ) − 𝑏 (𝑠, 𝑋 (𝑘−1)
𝑠 )𝑑𝑠 +

∫ 𝑡

0
𝜎 (𝑠, 𝑋 (𝑘 )

𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑘−1)
𝑠 )𝑑𝐵𝑠

)2
(2.5)

≤ 3E
(∫ 𝑡

0
𝑏 (𝑠, 𝑋 (𝑘 )

𝑠 ) − 𝑏 (𝑠, 𝑋 (𝑘−1)
𝑠 )𝑑𝑠

)2
+ 3E

(∫ 𝑡

0
𝜎 (𝑠, 𝑋 (𝑘 )

𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑘−1)
𝑠 )𝑑𝐵𝑠

)2
(2.6)

≤ 3𝑡 E
∫ 𝑡

0
|𝑏 (𝑠, 𝑋 (𝑘 )

𝑠 ) − 𝑏 (𝑠, 𝑋 (𝑘−1)
𝑠 ) |2𝑑𝑠 + 3E

∫ 𝑡

0
|𝜎 (𝑠, 𝑋 (𝑘 )

𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑘−1)
𝑠 ) |2𝑑𝑠 (2.7)

≤ 3𝑡 (1 + 𝐷) E
∫ 𝑡

0
|𝑋 (𝑘 )

𝑠 − 𝑋 (𝑘−1)
𝑠 |2𝑑𝑠. (2.8)

Then, via Fubini, we can get that

E |𝑋 (𝑘+1)
𝑡 − 𝑋 (𝑘 )

𝑡 |2 ≤ 𝐴𝑘+1𝑡𝑘

(𝑘 + 1)! (2.9)
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for some constant 𝐴 depending on 𝐶 , 𝐷 and E𝑋 2
0 . Then, the sequence (𝑋 (𝑛) ) ⊂ 𝐿2 (Ω × [0,𝑇 ]) is Cauchy because

for 𝑛 > 𝑚 ∈ N, we have

∥𝑋 (𝑛) − 𝑋 (𝑚) ∥𝐿2 (Ω×[0,𝑇 ] ≤
𝑚−1∑︁
𝑘=𝑛

𝑋 (𝑘+1) − 𝑋 (𝑘 )

𝐿2 (Ω×[0,𝑇 ]

≤
𝑚−1∑︁
𝑘=𝑛

(∫ 𝑇

0

𝐴𝑘+1𝑡𝑘

(𝑘 + 1)!𝑑𝑡
)1/2

→ 0 (2.10)

and 𝑚 → ∞. Therefore, we have a candidate solution 𝑋 that is the limit of sequence of outputs from the Picard
iteration 𝑋 (𝑛) . Moreover, since for any 𝑡 ∈ [0,𝑇 ], Jensen and Itô’s isometry gives∫ 𝑡

0
𝑏 (𝑠, 𝑋 (𝑛)

𝑠 )𝑑𝑠 →
∫ 𝑡

0
𝑏 (𝑠, 𝑋 )𝑑𝑠,

∫ 𝑡

0
𝜎 (𝑠, 𝑋 (𝑛)

𝑠 )𝑑𝑠 →
∫ 𝑡

0
𝜎 (𝑠, 𝑋 )𝑑𝑠 (2.11)

where the convergence is in 𝐿2, we have that 𝑋 is indeed a solution to the desired SDE.

Uniqueness Suppose there are two solutions to the SDE, 𝑋 and 𝑋 . Then, from some similar computation from
before, we get that

E |𝑋𝑡 − 𝑋𝑡 |2 ≤ 3𝑡 (1 + 𝐷) E
∫ 𝑡

0
|𝑋𝑠 − 𝑋𝑠 |2𝑑𝑠. (2.12)

Now, recall Gronwall’s inequality below.

Lemma 2.2 (Gronwall). Let 𝑢 : R→ R be a continuous function satisfying

𝑢𝑡 ≤ 𝑢0 +
∫ 𝑡

0
𝛽𝑠𝑢𝑠𝑑𝑠 (2.13)

for some 𝛽 : R→ R. Then, we have

𝑢𝑡 ≤ 𝑢0 exp
(∫ 𝑡

0
𝛽𝑠𝑑𝑠

)
. (2.14)

It immediately follows that for all 𝑡 ∈ [0,𝑇 ], 𝑋𝑡 = 𝑋𝑡 almost surely. In particular,

P(𝑋𝑡 = 𝑋𝑡 for 𝑡 ∈ Q ∩ [0,𝑇 ]) = 1. (2.15)

Using the continuity of the sample paths, we get uniqueness up to indistinguishability. □

2.2 Tanaka’s formula and pathwise non-uniqueness What we’ve shown just now is that, when the drift
and diffusion coefficients are suitably well-behaved, we have a unique solution to the SDE that can be interpreted
pathwise. We call this a strong solution as the solutions themselves are interpreted much like the ODE analog—it
satisfies some integral equation, is adapted to the same filtration as the Brownian motion that is given before hand,
and lives in the same probability space.

It turns out that the qualifier “strong” is necessary as there are SDEs which we thought we should amit a solution
fails to do so in the typical sense. The protagonist of this subsection will be Tanaka’s equation, which is an SDE of
the form

𝑑𝑋𝑡 = sgn(𝑋𝑡 )𝑑𝐵𝑡 , 𝑋0 = 0 (2.16)

where sgn = 1(0,∞) ] − 1(−∞,0] . Just from staring at the equation (and applying Itô’s formula), we can see that for
the same Brownian motion, if 𝑋𝑡 is a solution, −𝑋𝑡 will also be solution—pathwise uniqueness fails immediately!
Moreover, for the rest of the subsection, we will show that we don’t even have existence of strong solutions.

Proposition 2.3 (Tanaka formula). Let 𝐿𝑡 be the local time of a Brownian motion, i.e.,

𝐿𝑡 = lim
𝜖→0

1
2𝜖 |{𝑠 ∈ [0, 𝑡] : 𝐵𝑠 ∈ (−𝜖, 𝜖)}| (2.17)

where |𝐴| denotes the Lebesgue measure of the set 𝐴.Then, the local time satisfies

|𝐵𝑡 | =
∫ 𝑡

0
sgn(𝐵𝑠 )𝑑𝐵𝑠 + 𝐿𝑡 . (2.18)
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Proof. First, consider this smoothed version of the absolute value

𝑔𝜖 (𝑥) =
{
|𝑥 | if |𝑥 | ≥ 𝜖,
1
2

(
𝜖 + 𝑥2

𝜖

)
if |𝑥 | < 𝜖.

(2.19)

Then, by Itô, we have

𝑔𝜖 (𝐵𝑡 ) =
∫ 𝑡

0
𝑔′𝜖 (𝐵𝑠 )𝑑𝐵𝑠 +

∫ 𝑡

0
1(−𝜖,𝜖 ) (𝐵𝑠 )𝑑𝑠. (2.20)

Looking more carefully at 𝑔′𝜖 , using Itô isometry and Fubini, we get

E

(∫ 𝑡

0
𝑔′𝜖 (𝐵𝑠 )1(−𝜖,𝜖 ) (𝐵𝑠 )𝑑𝐵𝑠

)2
=

1
𝜖2
E

∫ 𝑡

0
𝐵2𝑠1(−𝜖,𝜖 ) (𝐵𝑠 )𝑑𝑠 =

∫ 𝑡

0

∫
(−𝜖,𝜖 )

𝑥2𝛾𝑠 (𝑑𝑥)𝑑𝑠 (2.21)

where 𝛾𝑠 is the Gaussian distribution with variance 𝑠 . We can bound the above by∫ 𝑡

0

∫
(−𝜖,𝜖 )

𝑥2𝛾𝑠 (𝑑𝑥)𝑑𝑠 ≤
∫ 𝑡

0
𝜖2𝛾𝑠 ((−𝜖, 𝜖))𝑑𝑠 ≤ 𝜖2

∫ 𝑡

0

2𝜖
√
2𝜋𝑠

𝑑𝑠 = 𝑐𝜖3 (2.22)

for some constant 𝑐 > 0. Therefore, we have that∫ 𝑡

0
𝑔′𝜖 (𝐵𝑠 )𝑑𝐵𝑠 → 0 (2.23)

in 𝐿2 as 𝜖 → 0. On the other hand, 𝑔′𝜖 (𝑥) = sgn(𝑥) for 𝑥 ∈ R \ (−𝜖, 𝜖). Hence, taking 𝜖 → 0 gives the desired
formula. □

We will take the theorem below for granted, which will be lightly discussed in the next subsection as it is related
to the martingale problem.

Lemma 2.4. An Itô process 𝑑𝑌𝑡 = 𝑣𝑡𝑑𝐵𝑡 with initial condition 𝑌0 = 0 is a Brownian motion if and only if 𝑣2𝑡 = 1 almost
surely for almost every 𝑡 .

Proposition 2.5. Tanaka’s equation (2.16) admits no strong solution.

Proof. We do this by way of contradiction. Suppose 𝑋 is a strong solution of (2.16) adapted to the filtration of some
Brownian motion 𝐵. Then, by Lemma 2.4, we know that 𝑋 is actually be Brownian motion. Moreover, by Itô’s
formula, we know that

𝑑𝐵𝑡 = sgn(𝑋𝑡 )𝑑𝑋𝑡 , (2.24)

which we know the solution—via Tanaka’s formula—to be

𝐵𝑡 =

∫ 𝑡

0
sgn(𝑋𝑠 )𝑑𝑋𝑠 = |𝑋𝑡 | − 𝐿𝑡 (2.25)

with 𝐿𝑡 being the local time of 𝑋 . This means that the Brownian motion 𝐵 is adapted to the filtration 𝜎{|𝑋𝑠 | : 𝑠 ≤ 𝑡},
which is a contradiction. □

2.3 Weak solution and themartingale problem Now that we’ve seen the complications that can occur, let’s
make precise what we mean by solutions.

Definition 2.6 (Solution of SDEs [10, Definition 8.2]). A solution to the stochastic differential equation (2.2) is:

• a (complete) filtered probability space (Ω, F , F = {F𝑡 }𝑡≥0, P),

• a F-Brownian motion 𝐵,
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• a F-adapted process 𝑋 with continuous sample paths satisfying (2.3).
Moreover, we say that there is

• weak existence if a solution (in the above sense) exists for every initial condition 𝑋0 = 𝑥 .

• strong existence if the solution is adapted to the complete canonical filtration of 𝐵.

• weak uniqueness if all weak solutions have the same law.

• pathwise uniqueness if whenever the probability space and Brownian motion is fixed, solutions of the SDE are
indistinguishable.

Proposition 2.7. Tanaka’s equation (2.16) admits a unique weak solution.

Proof. Let the solution 𝑋 be a Brownian motion (cf. Lemma 2.4). Define 𝐵 as

𝐵𝑡 =

∫ 𝑡

0
sgn(𝑋𝑡 )𝑑𝑋𝑡 (𝑑𝐵𝑡 = sgn(𝑋𝑡 )𝑑𝑋𝑡 ). (2.26)

Then, it follows that

𝑑𝑋𝑡 = sgn(𝐵𝑡 )𝑑𝐵𝑡 (2.27)

and 𝑋 is a weak solution. Weak uniqueness follows from uniqueless of the law of Brownian motion. □

There is actually a generic way to determining whether an SDE admits a weak solution. First, let’s make an
observation.

Proposition 2.8. Let 𝑋𝑡 be a solution to the SDE

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏 (𝑋𝑠 )𝑑𝑠 + 𝜎 (𝑋𝑠 )𝑑𝐵𝑠 . (2.28)

Then, for any 𝑓 ∈ 𝐶2
0 (R), the process

𝑓 (𝑋𝑡 ) − 𝑓 (𝑋0) −
∫ 𝑡

0
𝐴𝑓 (𝑋𝑠 )𝑑𝑠 (2.29)

is a martingale, where 𝐴𝑓 (𝑥) = 𝑏 (𝑥)𝜕𝑥 𝑓 (𝑥) + 1
2𝜎

2 (𝑥)𝜕2𝑥𝑥 𝑓 (𝑥) is the generator of the SDE.

Proof. By Itô’s formula, we know that

𝑓 (𝑋𝑡 ) = 𝑓 (𝑋0) +
∫ 𝑡

0

(
𝑏 (𝑋𝑠 )𝜕𝑥 𝑓 (𝑋𝑠 ) +

1
2𝜎

2 (𝑥)𝜕2𝑥𝑥 𝑓 (𝑋𝑠 )
)
𝑑𝑠 +

∫ 𝑡

0
𝜎 (𝑋𝑠 )𝜕𝑥 𝑓 (𝑋𝑠 )𝑑𝐵𝑠 . (2.30)

The conclusion then follows from Itô integrals being martingale. □

The clever observation that two great probabilists—Daniel Stroock and Srinivasa Varadhan—made is that the
converse can be used to fully characterize weak solutions of SDEs. First, we state the martingale problem.

Definition 2.9. Let L be the operator of the form L = 𝑏𝜕𝑥 + 𝑎𝜕2𝑥𝑥 where coefficients 𝑏 and 𝑎 are locally bounded
functions. We say the probability measure P𝑦 on (C[0,∞),BC[0,∞) ) solves the martingale problem if P𝑦 (𝑥0 = 𝑦) = 1
and the process

𝑓 (𝑥𝑡 ) − 𝑓 (𝑥0) −
∫ 𝑡

0
L 𝑓 (𝑥𝑠 )𝑑𝑠 (2.31)

is a martingale with respect to the filtration BC[0,𝑡 ] . Moreover, the martingale problem is well-posed if P is unique.

Theorem 2.10 (Weak solutions and the martingale problem [14, Theorem 20.1]). If the probability measure P𝑦 solves
the martingale problem for coefficients (𝑏, 𝜎2), then there exists a weak solution for the corresponding SDE whose law is
P𝑦 .

Aswe’ve seen, existence of weak solutions does not require Lipschitz coefficients. This is the samemore generally
for the martingale problem. In fact, Stroock and Varadhan proved that linear growth in addition to some continuity
and positive definiteness is enough to gaurantee the well-posedness of the martingale problem [15].
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3 Markovian properties of diffusion

In this section, we view solutions to stochastic equations as in (2.2) from the perspective of the more general theory
of Markov processes. The reference for general Markov processes (unless specified otherwise) is Le Gall [10, Chapter
6].

3.1 General Markov processes For this subsection, we will put ourselves in a general measure space (𝐸, E).
Qualifiers will be added as we go.

Definition 3.1. A collection (𝑄𝑡 )𝑡≥0 of stochastic kernels is a transition semigroup if it satisfies:

1. (initial condition) 𝑄0 (𝑥, 𝑑𝑦) = 𝛿𝑥 (𝑑𝑦),

2. (Chapman-Kolmogorov) 𝑄𝑡+𝑠 (𝑥,𝐴) =
∫
𝑄𝑠 (𝑦,𝐴)𝑄𝑡 (𝑥, 𝑑𝑦),

3. (joint measurability) for every 𝐴 ∈ E, the map (𝑡, 𝑥) ↦→ 𝑄𝑡 (𝑥,𝐴) is measurable with respect to BR+ ⊗ E.

Moreover, we say 𝑋 is a Markov process with semigroup (𝑄𝑡 )𝑡≥0 with respect to filtration {F𝑡 }𝑡≥0 is an {F𝑡 }𝑡≥0-
adapted process such that for any bounded measurable 𝑓 ,

E[𝑓 (𝑋𝑠+𝑡 ) |F𝑠 ] = 𝑄𝑡 𝑓 (𝑋𝑠 ) :=
∫

𝑓 (𝑦)𝑄𝑡 (𝑋𝑠 , 𝑑𝑦). (3.1)

Intuitively, the Markov property says that we can restart the process whenever and the statistical behavior re-
mains the same. We formalize this intuition below, which would be useful in drawing analogous results for strongly
Markov processes.

Theorem 3.2 (Simple Markov property). Let 𝑌 be a Markov process with semigroup (𝑄𝑡 )𝑡≥0 with respect to filtration
{F𝑡 }𝑡≥0. Moreover, assume that 𝑌 has cádlág sample paths. Then, for any measurable 𝑔 : D(𝐸) → R, we have

E[𝑔((𝑌𝑡+𝑠 )𝑡≥0) |F𝑠 ] = E𝑌𝑠 [𝑔] (3.2)

where E𝑦 is the expectation taken with respect to Law(𝑌 𝑦), the Markov process 𝑌 with initial conditions 𝑌0 = 𝑦.

Remark 3.3 (Sample path properties ofMarkov processes). The spaceD(𝐸) above denotes the space of cádlág (right-
continuous with left-limits) functions taking values in 𝐸 equipped with the smallest 𝜎-algebra such that coordinate
maps are measurable. In the remainder of the subsection, we will not discuss any sample path properties of Markov
processes as we a priori know that diffusion processes (the main interest of the note) has continuous sample paths.
In general, we know that Feller processes (cf. Definition 3.6) there is always a modification of 𝑌 with cádlág sample
paths, along with some modification of the filtration to ensure completeness and right-continuity. For details, see
[10, Chapter 6.3].

Proof of Theorem 3.2. From a monotone class argument, we claim that it is sufficient to consider 𝑔 = 1𝐴 for 𝐴 de-
pending on a finite number of coordinates, i.e.,

𝐴 = {𝑓 ∈ D(𝐸) : 𝑓 (𝑡1) ∈ 𝐵1, . . . , 𝑓 (𝑡𝑝 ) ∈ 𝐵𝑝 } (3.3)

for 0 ≤ 𝑡1 < · · · < 𝑡𝑝 and {𝐵𝑖 }𝑝𝑖=1 ⊂ 𝐸 that are measurable. We want to show that

E[𝑔(𝑌𝑡+𝑠 ) |F𝑠 ] = P[𝑌𝑠+𝑡1 ∈ 𝐵1, . . . , 𝑌𝑠+𝑡𝑝 ∈ 𝐵𝑝 |F𝑠 ] (3.4)

=

∫
𝐵1

∫
𝐵2

· · ·
∫
𝐵𝑝

𝑄𝑡𝑝−𝑡𝑝−1 (𝑦𝑝−1, 𝑑𝑦𝑝 ) . . . 𝑄𝑡2−𝑡1 (𝑦1, 𝑑𝑦2)𝑄𝑡1 (𝑌𝑠 , 𝑑𝑦1). (3.5)

Let 𝜙𝑖 = 1𝐵𝑖
for 𝑖 = 1, . . . , 𝑝 . Notice that, by the tower property,

E[𝜙1 (𝑌𝑠+𝑡1 )𝜙2 (𝑌𝑠+𝑡2 ) · · ·𝜙𝑝 (𝑌𝑠+𝑡𝑝 ) |F𝑠 ] = E[𝜙1 (𝑌𝑠+𝑡1 )𝜙2 (𝑌𝑠+𝑡2 ) · · ·E[𝜙𝑝 (𝑌𝑠+𝑡𝑝 ) |F𝑠+𝑡𝑝−1 ] |F𝑠 ] (3.6)
= E[𝜙1 (𝑌𝑠+𝑡1 )𝜙2 (𝑌𝑠+𝑡2 ) · · ·𝑄𝑡𝑝−𝑡𝑝−1𝜙𝑝 (𝑌𝑠+𝑡𝑝−1 ) |F𝑠 ] (3.7)

from which we conclude the proof via induction. □
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Alternatively, we can take a functional analytic spin. We can view𝑄𝑡 as a operator mapping elements from 𝐵(𝐸),
the set of bounded measurable function equipped with the uniform norm, back to 𝐵(𝐸). Then, we can define another
useful object called the resolvent.

Definition 3.4. Let 𝜆 > 0. Then, the 𝜆-resolvent of the semigroup (𝑄𝑡 )𝑡≥0 is the linear operator 𝑅𝜆 : 𝐵(𝐸) → 𝐵(𝐸)
defined pointwise as

𝑅𝜆 𝑓 (𝑥) =
∫ ∞

0
𝑒−𝜆𝑡𝑄𝑡 𝑓 (𝑥)𝑑𝑡 . (3.8)

The resolvent satisfies a new nice analytic, algebraic, and probabilistic properties. Two of which we will use later;
the other is presented for curiosity sake and to draw potential connections with potential theory of martingales.

Proposition 3.5 (Properties of the resolvent operator). Let 𝜆, 𝜇 > 0 and (𝑄𝑡 )𝑡≥0 be a transition semigroup. Then,

1. (boundedness) for any 𝑓 ∈ 𝐵(𝐸), ∥𝑅𝜆 𝑓 ∥ ≤ 𝜆−1∥ 𝑓 ∥,

2. (resolvent equation) 𝑅𝜆 − 𝑅𝜇 + (𝜆 − 𝜇)𝑅𝜆𝑅𝜇 ,

3. (constructing supermartingales) let 𝑋 be a Markov process with semigroup (𝑄𝑡 )𝑡≥0 with respect to filtration
{F𝑡 }𝑡≥0 and ℎ ∈ 𝐵(𝐸) be non-negative, then 𝑒−𝜆𝑡𝑅𝜆ℎ(𝑋𝑡 ) is an {F𝑡 }𝑡≥0-supermartingale.

Proof. We prove each item in the order listed.

1. From the fact that ∥𝑄𝑡 ∥ ≤ 1, we can bound

|𝑅𝜆 𝑓 (𝑥) | =
����∫ ∞

0
𝑒−𝜆𝑡𝑄𝑡 𝑓 (𝑥)𝑑𝑡

���� ≤ ∥ 𝑓 ∥
∫ ∞

0
𝑒−𝜆𝑡𝑑𝑡, (3.9)

and the statement follows.

2. The result follows from several applications of Fubini and change-in-variable:

𝑅𝜆𝑅𝜇 𝑓 (𝑥) =
∫ ∞

0
𝑒−𝜆𝑠𝑄𝑠

(∫ ∞

0
𝑒−𝜇𝑡𝑄𝑡 𝑓 𝑑𝑡

)
(𝑥)𝑑𝑠 (3.10)

=

∫ ∞

0
𝑒−𝜆𝑠

∫ ∞

0
𝑒−𝜇𝑡𝑄𝑡+𝑠 𝑓 (𝑥)𝑑𝑡𝑑𝑠 (3.11)

=

∫ ∞

0
𝑒−(𝜆−𝜇 )𝑠

∫ ∞

0
𝑒−𝜇 (𝑡+𝑠 )𝑄𝑡+𝑠 𝑓 (𝑥)𝑑𝑡𝑑𝑠 (3.12)

=

∫ ∞

0
𝑒−(𝜆−𝜇 )𝑠

∫ ∞

𝑠

𝑒−𝜇𝑡𝑄𝑡 𝑓 (𝑥)𝑑𝑡𝑑𝑠 (3.13)

=

∫ ∞

0
𝑒−𝜇𝑡𝑄𝑡 𝑓 (𝑥)

∫ 𝑡

0
𝑒−(𝜆−𝜇 )𝑠𝑑𝑠𝑑𝑡 (3.14)

=

∫ ∞

0
𝑄𝑡 𝑓 (𝑥)

(
𝑒−𝜇𝑡 − 𝑒−𝜆𝑡
𝜆 − 𝜇

)
𝑑𝑡 . (3.15)

3. Notice that the process 𝑒−𝜆𝑡𝑅𝜆ℎ(𝑋𝑡 ) is uniformly bounded in time; hence, integrable. Therefore, by Fubini, we
have that for any 𝑠 ≥ 0,

𝑒−𝜆𝑠𝑄𝑠𝑅𝜆ℎ =

∫ ∞

0
𝑒−𝜆 (𝑡+𝑠 )𝑄𝑠+𝑡ℎ𝑑𝑡 =

∫ ∞

𝑠

𝑒−𝜆𝑡𝑄𝑡ℎ𝑑𝑡 ≤ 𝑅𝜆ℎ. (3.16)

Finally, for any 𝑡, 𝑠 ≥ 0, noticing that

E[𝑒−𝜆 (𝑡+𝑠 )𝑅𝜆ℎ(𝑋𝑡+𝑠 ) |F𝑡 ] = 𝑒−𝜆 (𝑡+𝑠 )𝑄𝑠𝑅𝜆ℎ(𝑋𝑡 ) (3.17)

and using the preceeding inequality yields the supermartingale property.
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□

For the remainder of the notes, we’re interested in a particular type ofMarkov processes with additional structure.
In particular, we want to ask for particular continuity in time.

Definition 3.6. Let 𝐸 be ametrizable, locally compact topological space that is countable at infinity. Let𝐶0 (𝐸) denote
the space of continuous functions that vanish at infinity, equipped with the uniform norm. Then, semigroup (𝑄𝑡 )𝑡≥0
is a Feller semigroup if

1. (closure) for any 𝑓 ∈ 𝐶0 (𝐸), 𝑄𝑡 𝑓 ∈ 𝐶0 (𝐸),

2. (continuity) for any 𝑓 ∈ 𝐶0 (𝐸), lim𝑡→0 ∥𝑄𝑡 𝑓 − 𝑓 ∥ → 0.

The Markov process associated with a Feller semigroup is called a Feller process. For each Feller semigroup, we
associate the generator 𝐿 : 𝐷 (𝐿) ⊂ 𝐶0 (𝐸) → 𝐶0 (𝐸) defined as

𝐿𝑓 = lim
𝑡→0

𝑄𝑡 𝑓 − 𝑓
𝑡

(3.18)

for any 𝑓 ∈ 𝐷 (𝐿), where the domain is defined to be wherever the limit exists.

Remark 3.7. For this note, Feller processes will always take values in a locally compact space countable at infinity.
We will now drop this qualifier when talking about Feller processes.

Remark 3.8. There are a few different definitions of Feller processes. Some more generally let the operators act on
𝐶𝑏 (𝐸), the space of bounded continuous functions equipped with the uniform norm. Some others might require the
continuity condition to be with respect to the norm topology as oppose to the strong operator topology. We follow
here the standards of [10, Chapter 6.2] and [13, Chapter 7.1].

We can immediately derive two simple identities.

Proposition 3.9. Let 𝑓 ∈ 𝐷 (𝐿) and 𝑠 > 0. Then, 𝑄𝑠 𝑓 ∈ 𝐷 (𝐿) and 𝐿𝑄𝑠 𝑓 = 𝑄𝑠𝐿𝑓 .

Proof. Since 𝑄𝑠 is continuous (∥𝑄𝑠 ∥ ≤ 1), we get that

𝑄𝑡 (𝑄𝑠 𝑓 ) −𝑄𝑠 𝑓

𝑡
= 𝑄𝑠

(
𝑄𝑡 𝑓 − 𝑓

𝑡

)
→ 𝑄𝑠𝐿𝑓 (3.19)

as 𝑡 → 0. □

Proposition 3.10. If 𝑓 ∈ 𝐷 (𝐿), then for every 𝑡 ≥ 0, we have

𝑄𝑡 𝑓 = 𝑓 +
∫ 𝑡

0
𝑄𝑠𝐿𝑓 𝑑𝑠. (3.20)

Proof. We “differentiate” and get

𝑄𝑡+𝜖 𝑓 −𝑄𝑡 𝑓

𝜖
= 𝑄𝑡

(
𝑄𝜖 𝑓 − 𝑓

𝜖

)
→ 𝑄𝑡𝐿𝑓 (3.21)

as 𝜖 → 0. □

Using these two identities, we can relate the resolvent operator and the generator.

Theorem 3.11. Let 𝜆 > 0. Then, 𝑅𝜆 = (𝜆𝐼 − 𝐿)−1 in the sense of:

1. for every 𝑔 ∈ 𝐶0 (𝐸), 𝑅𝜆𝑔 ∈ 𝐷 (𝐿) and (𝜆𝐼 − 𝐿)𝑅𝜆𝑔 = 𝑔,

2. if 𝑓 ∈ 𝐷 (𝐿), 𝑅𝜆 (𝜆𝐼 − 𝐿) 𝑓 = 𝑓 ,

3. 𝐷 (𝐿) = range𝑅𝜆 , which is dense in 𝐶0 (𝐸).
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Proof. We prove each item in the order listed.

1. Let 𝑔 ∈ 𝐶0 (𝐸) and 𝜖 > 0. By Fibini and a change-in-variable,

𝑄𝜖 (𝑅𝜆𝑔) − 𝑔
𝜖

=
1
𝜖

(∫ ∞

0
𝑒−𝜆𝑡𝑄𝜖+𝑡𝑔𝑑𝑡 −

∫ ∞

0
𝑒−𝜆𝑡𝑄𝑡𝑔𝑑𝑡

)
(3.22)

=
1
𝜖

(
(1 − 𝑒−𝜆𝜖 )

∫ ∞

0
𝑒−𝜆𝑡𝑄𝜖+𝑡𝑔𝑑𝑡 −

∫ 𝜖

0
𝑒−𝜆𝑡𝑄𝑡𝑔𝑑𝑡

)
. (3.23)

By the continuity property of Feller semigroups, we can take the limit as 𝜖 → 0 and get

𝐿𝑅𝜆𝑔 = lim
𝜖→0

𝑄𝜖 (𝑅𝜆𝑔) − 𝑔
𝜖

= 𝜆𝑅𝜆𝑔 − 𝑔. (3.24)

2. Let 𝑓 ∈ 𝐷 (𝐿) and 𝑥 ∈ 𝐸. Then, by the previous proposition, we know that∫ ∞

0
𝑒−𝜆𝑡𝑄𝑡 𝑓 (𝑥)𝑑𝑡 =

1
𝜆
𝑓 (𝑥) +

∫ ∞

0
𝑒−𝜆𝑡

∫ 𝑡

0
𝑄𝑠𝐿𝑓 (𝑥)𝑑𝑠𝑑𝑡 . (3.25)

Applying Fubini, the above expression becomes

1
𝜆
𝑓 (𝑥) +

∫ ∞

0
𝑄𝑠𝐿𝑓 (𝑥)

∫ ∞

𝑠

𝑒−𝜆𝑡𝑑𝑡𝑑𝑠 =
1
𝜆
𝑓 (𝑥) +

∫ ∞

0

𝑒−𝜆𝑠

𝜆
𝑄𝑠𝐿𝑓 (𝑥)𝑑𝑠. (3.26)

Therefore, we get that

𝜆𝑅𝜆 𝑓 = 𝑓 + 𝑅𝜆𝐿𝑓 . (3.27)

3. The fact that 𝐷 (𝐿) = range𝑅𝜆 is apparent from the inverse relation derived. It is left to show that the range of
𝑅𝜆 is dense. First, we note that for any 𝜆, 𝜇 > 0, range𝑅𝜆 = range𝑅𝜇 because the resolvent equation gives

𝑅𝜆 𝑓 = 𝑅𝜇 (𝑓 + (𝜇 − 𝜆)𝑅𝜆 𝑓 . (3.28)

From here, for every 𝑓 ∈ 𝐶0 (𝐸), we have

𝜆𝑅𝜆 𝑓 = 𝜆

∫ ∞

0
𝑒−𝜆𝑡𝑄𝑡 𝑓 𝑑𝑡 =

∫ ∞

0
𝑒−𝑡𝑄𝑡/𝜆 𝑓 𝑑𝑡 → 𝑓 (3.29)

as 𝜆 → ∞ where the convergence is due to the continuity property of Feller semigroups and dominated
convergence.

□

In fact, the connection bewteen the generator and the resolvent operator is a much deeper theory in functional
analysis and PDE considering existence and uniqueness of evolution equations.The Hille-Yosida theorem gives a
complete characterization of the two objects—any given Feller (or “strongly continuous”/“𝐶0” in the functional ana-
lytic world) semigroup corresponds to a generator, and every generator generates a unique semigroup through the
evolution equations.

Theorem 3.12 (Hille-Yosida [17, Section 7] or [3, Theorem 7.8]). Let B be a Banach space, and let operator 𝐿 : 𝐷 (𝐿) ⊂
B → B be an unbounded linear operator. Moreover, assume that 𝐷 (𝐿) is dense and for every 𝜆 > 0, 𝜆𝐼 − 𝐿 is bijective
with ∥𝜆𝐼 − 𝐿∥ ≤ 1. Then, for any 𝑢0 ∈ 𝐷 (𝐿), there is a unique 𝑢 : [0,∞) → B such that it solves the evolution equation

𝑑𝑢

𝑑𝑡
= 𝐿𝑢, 𝑢 (0) = 𝑢0 . (3.30)

Moreover, the collection of maps 𝑄𝑡 : 𝑢0 ↦→ 𝑢 (𝑡) is a strongly continuous semigroup. Conversely, given strongly contin-
uous semigroups (𝑄𝑡 )𝑡≥0, there exists an operator 𝐿 satisfying the properties above that solves the evolution equation.

Remark 3.13. There are different versions of Hille-Yosida, some more relevant to the theory of Markov processes
than another. The standard reference on this is Ethier and Kurtz [6, Theorem 1.6/Theorem 2.2], which phrased
the density of 𝐷 (𝐿) and invertibility of 𝜆𝐼 − 𝐿 as 𝐿 being dissipative or as satisfying certain maximum principle
respectively.
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3.2 Strong Markov properties of SDEs We will try to prove the strong Markov property of SDEs two ways.
The first uses the particular fact that it is a solution to a differential equation of the form (2.3). The second will start
by establishing strong Markov property for Feller processes and we will proceed by showing that the generator and
semigroup associated with solutions to SDEs driven by Brownian motion is Feller.

We begin with the first approach.

Theorem 3.14 (Strong Markov property of diffusions). Let (Ω, F , F = {F𝑡 }𝑡≥0, P) be a (complete) filtered space and
let 𝑋 be the unique strong solution to the homogeneous stochastic differential equation

𝑑𝑋𝑡 = 𝑏 (𝑋𝑡 )𝑑𝑡 + 𝜎 (𝑋𝑡 )𝑑𝐵𝑡 . (3.31)

Then, 𝑋 is a Markov process with respect to F with semigroup

𝑄𝑡 𝑓 (𝑥) = E 𝑓 (𝑋𝑥
𝑡 ) (3.32)

for any 𝑓 ∈ 𝐵(R𝑑 ) where 𝑋𝑥 is any solution to the same SDE with initial condition 𝑋𝑥
0 = 𝑥 . Moreover, 𝑋 is strongly

Markov, i.e., for any F-stopping time 𝜏 and bounded measureable 𝑔 : 𝐶 (R𝑑 ;R) → R,

E[1𝜏<∞𝑔((𝑋𝜏+𝑡 )𝑡≥0) |F𝜏 ] = 1𝜏<∞ E𝑋𝜏 [𝑔] (3.33)

where E𝑥 is the expectation taken with respect to the measure Law(𝑋𝑥 ).

Remark 3.15. In fact, we do not need the existence of strong solutions. The crucial construction is a map from the
desired Brownian motion to the solution of the SDE once we’re given the probability space for which the solution
lives in. Such map obviously exists when a strong solution is available. However, the existence of such map is more
subtle for weak solutions and we refer the reader to [10, Theorem 8.5].

Proof of Theorem 3.14. We want to first show that

E[1𝜏<∞ 𝑓 (𝑋𝜏+𝑡 ) |F𝜏 ] = 1𝜏<∞𝑄𝑡 𝑓 (𝑋𝜏 ). (3.34)

From here, we will assume that 𝜏 < ∞ almost surely for notational simplicity. This does not affect the subsequent
pathwise arguments. Notice that

𝑋𝜏+𝑡 = 𝑋𝜏 +
∫ 𝜏+𝑡

𝜏

𝑏 (𝑋𝑠 )𝑑𝑠 +
∫ 𝜏+𝑡

𝜏

𝜎 (𝑋𝑠 )𝑑𝐵𝑠 . (3.35)

Now, define the shifted version of each quantity:

�̃�𝑡 = 𝑋𝜏+𝑡 , F̃𝑡 = F𝜏+𝑡 , �̃�𝑡 = 𝐵𝜏+𝑡 − 𝐵𝜏 ; (3.36)

it is worth noting that �̃�𝑡 is still a Brownian motion by its strong Markov property. It follows that �̃� is adapted to
{F̃𝑡 }𝑡≥0 and ∫ 𝑡+𝜏

𝜏

𝑏 (𝑋𝑠 )𝑑𝑠 =
∫ 𝑡

0
𝑏 (�̃�𝑠 )𝑑𝑠,

∫ 𝑡+𝜏

𝜏

𝜎 (𝑋𝑠 )𝑑𝐵𝑠 =
∫ 𝑡

0
𝜎 (�̃�𝑠 )𝑑�̃�𝑠 (3.37)

where the latter can be argued via approximation (definition of Itô integral). Therefore, �̃� is a strong solution to
the same SDE in the “shifted” probability space (Ω, F , {F̃𝑡 }𝑡≥0, P) with respect to Brownian motion �̃� and initial
condition 𝑋𝜏 . In fact, there is a map ℎ𝑋𝜏

: �̃� ↦→ �̃� . This means that, for every 𝑡 ≥ 0,

E[1𝜏<∞ 𝑓 (𝑋𝜏+𝑡 ) |F𝜏 ] = E[1𝜏<∞ 𝑓 (�̃�𝑡 ) |F𝜏 ] = E[1𝜏<∞ 𝑓 (ℎ𝑋𝜏
(�̃�)𝑡 ) |F𝜏 ] (3.38)

= 1𝜏<∞
∫

𝑓 (ℎ𝑋𝜏
(𝑤)𝑡 )𝑊 (𝑑𝑤) (3.39)

= 1𝜏<∞𝑄𝑡 𝑓 (𝑋𝜏 ) (3.40)

where the third equality is by Fubini and the fact that �̃� is independent of F𝜏 with law𝑊 , which is the Wiener
measure. The form claimed in (3.33) follows from induction argument as in the proof of Theorem 3.2.

Lastly, we check that (𝑄𝑡 )𝑡≥0 is a semigroup.
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1. By construction, 𝑄0 𝑓 (𝑥) = E 𝑓 (𝑋𝑥
0 ) = 𝑥 for any 𝑓 .

2. By the tower property,

𝑄𝑡+𝑠 𝑓 (𝑥) = E 𝑓 (𝑋𝑥
𝑠+𝑡 ) = EE[𝑓 (𝑋𝑥

𝑠+𝑡 |F𝑡 ] = E𝑄𝑠 𝑓 (𝑋𝑥
𝑡 ) =

∫
𝑄𝑠 𝑓 (𝑦)𝑄𝑡 (𝑥, 𝑑𝑦). (3.41)

3. The map (𝑥, 𝑡) ↦→ 𝑄𝑡 𝑓 (𝑥) is measurable is by the continuity of 𝑥 ↦→ Law(𝑋𝑥 ), cf. [10, Theorem 8.5].

Needless to say, the Markov property follows from the strong Markov property. □

From the proof above, we did not learn much about the structure of the semigroup; rather, we guessed that it
is Markovian and it turned out alright. The proposition below digs deeper into the structure of the process and its
analytic niceties.

Proposition 3.16 (Itô diffusions are Feller). The semigroup (𝑄𝑡 )𝑡≥0 defined in Theorem 3.14 is Feller with generator
𝐿 : 𝐷 (𝐿) ⊃ 𝐶2

0 (R𝑑 ) → 𝐶0 (R𝑑 ) satisfying

𝐿𝑓 (𝑥) = 𝑏 (𝑥) · ∇𝑓 + 1
2 tr[𝜎𝜎⊺∇2 𝑓 ] . (3.42)

Proof (assuming 𝑏 and 𝜎 are bounded). The form and domain of the generator follows from an application of Itô’s
formula and the martingale property of the Itô integral (cf. Theorem 3.18). So, we focus on proving that 𝑄𝑡 is Feller.
Fix 𝑓 ∈ 𝐶0 (R𝑑 ). We first check that 𝑄𝑡 𝑓 ∈ 𝐶0 (R𝑑 ). For some 0 < 𝐴 < ∞, we can decompose

lim sup
𝑥→∞

|𝑄𝑡 𝑓 (𝑥) | = lim sup
𝑥→∞

| E 𝑓 (𝑋𝑥
𝑡 ) | ≤ lim sup

𝑥→∞
| E 𝑓 (𝑋𝑥

𝑡 )1 |𝑋𝑥
𝑡 −𝑥 | ≤𝐴 | + ∥ 𝑓 ∥P( |𝑋𝑥

𝑡 − 𝑥 | > 𝐴) (3.43)

≤ ∥ 𝑓 ∥ sup
𝑥∈R𝑑
P( |𝑋𝑥

𝑡 − 𝑥 | > 𝐴). (3.44)

However, by boundedness of the coefficients,

P( |𝑋𝑥
𝑡 − 𝑥 | > 𝐴) ≤

E |𝑋𝑥
𝑡 − 𝑥 |2

𝐴2 → 0 (3.45)

as 𝐴 → ∞. Thus, we have that 𝑄𝑡 𝑓 ∈ 𝐶0 (R𝑑 ).
Now, we want to show continuity, i.e., 𝑄𝑡 𝑓 → 𝑓 as 𝑡 → 0. For any 𝜖 > 0, we have

lim sup
𝑡→0

sup
𝑥∈R𝑑

| E 𝑓 (𝑋𝑥
𝑡 ) − 𝑓 (𝑥) | ≤ lim sup

𝑡→0
sup
𝑥∈R𝑑

| E(𝑓 (𝑋𝑥
𝑡 ) − 𝑓 (𝑥))1 |𝑋𝑥

𝑡 −𝑥 | ≤𝜖 | + 2∥ 𝑓 ∥P( |𝑋𝑥
𝑡 − 𝑥 | > 𝜖) (3.46)

≤ sup
𝑥,𝑦∈R𝑑 : |𝑥−𝑦 | ≤𝜖

|𝑓 (𝑥) − 𝑓 (𝑦) | (3.47)

where the probability of𝑋𝑥
𝑡 deviating away from 𝑥 vanishes again by the boundedness of the coefficients and Cheby-

shev inequality. Moreover, the whole expression vanishes as 𝜖 → 0 by the continuity of 𝑓 . Thus, (𝑄𝑡 )𝑡≥0 is a Feller
semigroup. □

The point of showing that we’re working with Feller processes is that strong Markov property immediately fol-
lows (with some modifications to the filtration so that it is right-continuous). The proof, which will not be presented
here, is not unfamiliar at all. We argue via approximation, partitioning the time axis and letting the random time
take value in some vanishing interval. The continuity properties of Feller semigroups make sure that the limits can
be passed through.

Theorem 3.17 (Feller processes are strongly Markov [10, Theroem 6.17]). Let 𝑌 be a Markov process with a Feller
semigroup (𝑄𝑡 )𝑡≥0 with respect to filtration {F𝑡 }𝑡≥0. Moreover, assume that 𝑌 has cádlág sample paths and let 𝜏 be a
stopping time with respect to the filtration {F𝑡+ }𝑡≥0. Then, for any measurable 𝑔 : D(𝐸) → R, we have

E[1𝜏<∞𝑔((𝑌𝑡+𝜏 )𝑡≥0) |F𝜏 ] = 1𝜏<∞ E𝑌𝜏 [𝑔] . (3.48)
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3.3 Martingales and the Feynman-Kac formula We’ve seen, in the case of diffusions, that the generator can
be used to find us a martingale. The same form actually holds more generally for the Markov processes.

Theorem 3.18 (Generators and martingales). Let (𝑄𝑡 )𝑡≥0 be a Feller semigroup of Markov process 𝑋 taking values in
𝐸. Moreover, let 𝐿 be the corresponding generator. For ℎ,𝑔 ∈ 𝐶0 (𝐸), the following are equivalent:

1. ℎ ∈ 𝐷 (𝐿) and 𝐿ℎ = 𝑔,

2. for every 𝑥 ∈ 𝐸, the process

ℎ(𝑋𝑥
𝑡 ) −

∫ 𝑡

0
𝑔(𝑋𝑥

𝑠 )𝑑𝑠 (3.49)

is a martingale.

Proof. We first show item 1 =⇒ item 2. For any 𝑡, 𝑠 ≥ 0,

E[ℎ(𝑋𝑥
𝑡+𝑠 ) |F𝑡 ] = 𝑄𝑠ℎ(𝑋𝑥

𝑡 ) = ℎ(𝑋𝑥
𝑡 ) +

∫ 𝑠

0
𝑄𝑟𝑔(𝑋𝑥

𝑡 )𝑑𝑟 . (3.50)

Moreover, by Fubini,

E

[∫ 𝑡+𝑠

𝑡

𝑔(𝑋𝑥
𝑟 )𝑑𝑟 |F𝑡

]
=

∫ 𝑡+𝑠

𝑡

E
[
𝑔(𝑋𝑥

𝑟 ) |F𝑡
]
𝑑𝑟 =

∫ 𝑡+𝑠

𝑡

𝑄𝑟−𝑡𝑔(𝑋𝑥
𝑡 )𝑑𝑟 =

∫ 𝑠

0
𝑄𝑟𝑔(𝑋𝑥

𝑡 )𝑑𝑟 . (3.51)

Combining the two gives the martingale property:

E

[
ℎ(𝑋𝑥

𝑡+𝑠 ) −
∫ 𝑡+𝑠

0
𝑔(𝑋𝑥

𝑟 )𝑑𝑟 |F𝑡
]
= ℎ(𝑋𝑥

𝑡 ) −
∫ 𝑡

0
𝑔(𝑋𝑥

𝑟 )𝑑𝑟 . (3.52)

We now show item 2 =⇒ item 1. Since martingales have constant expectation, for all 𝑡 ≥ 0,

ℎ(𝑥) = E
[
ℎ(𝑋𝑥

𝑡 ) −
∫ 𝑡

0
𝑔(𝑋𝑥

𝑠 )𝑑𝑠
]
. (3.53)

But 𝑋 is also a Markov process:

E

[
ℎ(𝑋𝑥

𝑡 ) −
∫ 𝑡

0
𝑔(𝑋𝑥

𝑠 )𝑑𝑠
]
= 𝑄𝑡ℎ(𝑥) −

∫ 𝑡

0
𝑄𝑠ℎ(𝑥)𝑑𝑠. (3.54)

Therefore, putting the two together

𝑄𝑡ℎ(𝑥) − ℎ(𝑥)
𝑡

=
1
𝑡

∫ 𝑡

0
𝑄𝑠ℎ(𝑥)𝑑𝑠 → ℎ(𝑥) (3.55)

by the fact that (𝑄𝑡 )𝑡≥0 is Feller. Thus, ℎ ∈ 𝐷 (𝐿) and 𝐿ℎ = 𝑔. □

From here, we immediately get the “Kolmogorov backward equation,” which is a weaker version of Dynkin’s
formula. However, from the same line of reasoning, we also get Dynkin’s formula for free via optional sampling
theorem. We reproduce the two identities below.

Corollary 3.19 (Kolmogorov & Dynkin). Let 𝑋 be a Feller process with generator 𝐿. Then, for any 𝑓 ∈ 𝐶2
0 (R𝑑 ),

1. (Kolmogorov’s backward equation) the function 𝑢 (𝑡, 𝑥) = E 𝑓 (𝑋𝑥
𝑡 ) satisfies

𝜕𝑡𝑢 = 𝐿𝑢, 𝑢 (0, 𝑥) = 𝑓 (𝑥) . (3.56)

2. (Dynkin’s formula) for any integrable stopping time 𝜏 , we have

E 𝑓 (𝑋𝑥
𝜏 ) = E

[∫ 𝜏

0
𝐿𝑓 (𝑋𝑥

𝑠 )𝑑𝑠
]
. (3.57)
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So far, we’ve been converting the probabilistic question to an analytic one. We can do the converse, too. In
particular, let 𝐿 be the generator of an Itô diffusion and consider

𝜕𝑡𝑣 = 𝐿𝑣 − 𝑞𝑣, 𝑢 (0, 𝑥) = 𝑓 (𝑥). (3.58)

Can we find a process whose expectation with respect to some function correspond to this PDE?

Example 3.20 (Killed Diffusions). Let 𝑋𝑥 be an Itô diffusion in R𝑑 starting at 𝑥 ∈ R𝑑 . We will extend 𝑋 , denoted by
�̃�𝑥 , to take values in R𝑑 ∪ {A} whereA is the “dead state”; once entered the dead state—or killed—�̃�𝑥 cannot leave.
Note that this is not a numerical value. We will kill �̃� at a random time: let 𝜏 be exponentially distributed with unit
rate independent of �̃� , then the killing time 𝜁 is defined to be

𝜁 = inf
{
𝑡 ≥ 0 :

∫ 𝑡

0
𝑞(�̃�𝑥

𝑠 )𝑑𝑠 ≤ 𝜏
}

(3.59)

for some 𝑞 ∈ 𝐶 (R𝑑 ). To summarize, the new process �̃�𝑥 is such that

�̃�𝑥
𝑡 =

{
𝑋𝑥
𝑡 if 𝑡 < 𝜁 ,
A if 𝑡 ≥ 𝜁 .

(3.60)

Let {F 𝑥
𝑡 }𝑡≥0 denote the natural filtration generated by 𝑋𝑥 . Now, since we know the distribution of 𝜏 , we can write

down the distribution of 𝜁 :

P(𝜁 > 𝑡 |F 𝑥
∞) = P

(
𝜏 ≥

∫ 𝑡

0
𝑞(�̃�𝑥

𝑠 )𝑑𝑠 |F 𝑥
∞

)
= exp

(
−

∫ 𝑡

0
𝑞(�̃�𝑥

𝑠 )𝑑𝑠
)
≔ 𝑍𝑥

𝑡 . (3.61)

Moreover, by the Markov property of 𝑋 (which is inherited by �̃� prior to getting killed), we have

P(𝜁 > 𝑡 + 𝑠 |F 𝑥
𝑡 ) = 𝑞(𝑡, 𝑥) E

[
exp

(
−

∫ 𝑡+𝑠

𝑡

𝑞(�̃�𝑥
𝑠 )𝑑𝑠

)
|F 𝑥

𝑡

]
(3.62)

= 𝑍𝑥
𝑡 E

�̃�𝑥
𝑡

[
exp

(
−

∫ 𝑠

0
𝑞(𝑥)𝑑𝑠

)]
. (3.63)

Then, for any 𝑓 ∈ 𝐶2
0 (R𝑑 ) (with the extension that 𝑓 (A) = 0), we can see that

E 𝑓 (𝑋𝑥
𝑡 )𝑍𝑥

𝑡 = E[𝑓 (𝑋𝑥
𝑡 )P(𝜁 > 𝑡 |F 𝑥

∞)] = E 𝑓 (𝑋𝑥
𝑡 )1𝜁>𝑡 = E 𝑓 (�̃�𝑥

𝑡 ). (3.64)

Lastly, if we define 𝑣 ∈ 𝐶1,2 (R × R𝑑 ) be such that

𝑣 (𝑡, 𝑥) = E
[
𝑓 (𝑋𝑥

𝑡 )𝑍𝑥
𝑡

]
= E 𝑓 (�̃�𝑥

𝑡 ), (3.65)

it can be shown that 𝑣 is the unique solution (within some appropriate class of functions) of the PDE (3.58). This is
one of many applications (perhaps the less popular) motivations for studying the Feynman-Kac formula.

Theorem 3.21 (Feynman-Kac [11, Theorem 8.2.1]). Let 𝑓 ∈ 𝐶2
0 (R𝑑 ) and 𝑞 ∈ 𝐶 (R𝑑 ) be bounded below. Then, letting

𝑣 (𝑡, 𝑥) = E
[
𝑓 (𝑋𝑥

𝑡 ) exp
(
−

∫ 𝑡

0
𝑞(𝑋𝑥

𝑠 )𝑑𝑠
)]
, (3.66)

then 𝑣 solves the differential equation

𝜕𝑡𝑣 = 𝐿𝑣 + 𝑞𝑣, 𝑣 (𝑡, 𝑥) = 𝑓 (𝑥). (3.67)

Moreover, if 𝑤 ∈ 𝐶1,2 (R × R𝑑 ) is a solution to the above equation and is bounded on 𝐾 × R𝑛 for any compact 𝐾 ⊂ R,
then𝑤 = 𝑣 .
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4 Girsanov’s theorem and consequences

The goal of this section is to demonstrate how the laws of diffusion processes can be related to one another and to
motivate change-in-measures as a useful tool in analyzing systems involving diffusions. We will give two examples
in-depth: the first concerns with partial large deviation results in the small-noise limit, the second generalizes Bayes’
theorem to derive filters for partially-observed diffusions. However, perhaps the most notable application is in
finanace where Girsanov’s theorem appears as yet another fundamental theorem.

Theorem 4.1 (Fundamental theorem of asset pricing [12, Theorem 2.15]). A market is arbitrage-free if and only if
there exists one equivalent martingale measure.

We start with an intuitive derivation of the type of results we will be studying. Consider the space of continuous
functions on the unit intercal C([0, 1];R) and a discretized (perhaps linearly interpolated so that it takes values in
C([0, 1];R)) Brownian motion with grid size 𝛿 , which has law

P(𝐵𝛿 ∈ 𝐸1, 𝐵2𝛿 ∈ 𝐸2, . . . , 𝐵1 ∈ 𝐸𝑛) =
∫
𝐸1×𝐸2 · · ·×𝐸𝑛

(2𝜋𝛿)−𝑛/2 exp
(
− 1
2𝛿

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑥𝑖−1 |2
)
𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛 (4.1)∫

𝐸1×𝐸2 · · ·×𝐸𝑛
(2𝜋𝛿)−𝑛/2 exp

(
−𝛿2

𝑛∑︁
𝑖=1

���𝑥𝑖 − 𝑥𝑖−1
𝛿

���2) 𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛 (4.2)

where 𝑛 = 1/𝛿 . Now, we take 𝛿 → 0 (𝑛 → ∞) to try to write an expression down for the law of Brownian motion
of path space, or the Wiener measure W. Notice that the constant term in front converges to one, the sum in the
exponent converges to an integral, and the summand converges to the time derivative of the path. Therefore, we
“may” write

W(𝑑𝑥) = exp
(
−1
2

∫ 1

0
| ¤𝑥𝑡 |2𝑑𝑡

)
𝑑𝑥 = exp

(
−1
2 𝐼 (𝑥)

)
𝑑𝑥 (4.3)

where 𝑑𝑥 is the Lebesgue measure on C([0, 1];R), ¤𝑥 denotes the time-derivative of the path 𝑥 ∈ C([0, 1];R), and 𝐼
we say is the “action functional.”

Remark 4.2 (Two contradictions lead to a truth?). The above formulation is wrong in two folds: first, Lebesgue
measure on infinite-dimensional spaces do not exist. Moreover, the action function is not well-defined as we know a
posteriori that Brownian motion paths are almost surely not differentiable. But perhaps like how product of negative
numbers yield a positive one, two false statements can lead to a somewhat-true one.

We’re interested in the law of the Brownian motion after shifting by some function ℎ; denote this new measure
as Q. In particular, we want to find the Radon-Nikodym derivative such that

𝑑Q

𝑑W
(𝑥)W(𝑑𝑥) = exp

(
−1
2

∫ 1

0
| ¤(𝑥 − ℎ)𝑡 |2𝑑𝑡

)
𝑑𝑥 = 𝑑Q(𝑑𝑥). (4.4)

But this is easy—we just complete the squares! It turns out that

𝑑Q

𝑑W
(𝑥) = exp

(∫ 1

0
¤ℎ𝑡 ¤𝑥𝑡𝑑𝑡 −

∫ 1

0
| ¤ℎ𝑡 |2𝑑𝑡

)
= exp

(∫ 1

0
¤ℎ𝑡𝑑𝑥𝑡 −

∫ 1

0
| ¤ℎ𝑡 |2𝑑𝑡

)
(4.5)

where the first term on the exponential we interpret as the Itô integral. This is the Cameron-Martin formula, which
we state more formally below and the proof will follow straightforwardly in the next subsection.

Proposition 4.3 (Cameron-Martin). Let ℎ : R+ → R be such that there exists ¤ℎ satisfying ℎ𝑡 =
∫ 𝑡

0
¤ℎ𝑠𝑑𝑠 and ¤ℎ ∈

𝐿2 (R+, 𝑑𝑡). Then, for every nonnegative measurable 𝑔 ∈ C(R+;R), we have∫
𝑔(𝑥 + ℎ)W(𝑑𝑥) =

∫
exp

(∫ ∞

0
¤ℎ𝑡𝑑𝑥𝑡 −

∫ ∞

0
| ¤ℎ𝑡 |2𝑑𝑡

)
𝑔(𝑥)W(𝑑𝑥). (4.6)
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Remark 4.4 (Cameron-Martin space and translational invariance). The space of ℎ such that the conditions given
above is satisfied is called the Cameron-Martin space. It is in fact a Hilbert space equipped with the inner product

⟨𝑓 , ℎ⟩ =
∫ ∞

0
¤𝑓𝑡 ¤ℎ𝑡𝑑𝑡, (4.7)

and the space is dense in C(R+;R). Due to the lack of translationally-invariant measures in infinite-dimensional
spaces, the Wiener measure can be thought of as a good alternative to Lebesgue measures via the Cameron-Martin
formula/space. The theory of Gaussian measures and Cameron-Martin space (and related spaces, e.g., the reproduc-
ing kernel Hilbert space) reaches far beyond the classical stochastic differential equations story, cf. Hairer [8] for a
shorter introduction and Bogachev [2] for a comprehensive treatment.

4.1 Change-in-measure via exponential martingales While Girsanov’s theorem can be proved straight-
forwardly via Itô’s formula and utilizing some characterization theorem, we make an attempt of highlighting the
martingale part of the story. We begin with a reminder of a simple result about a special Doob’s martingale.

Proposition 4.5 (Radon-Nikodymderivatives as aUImartingale). Consider a filtered probability space (Ω, F , {F𝑡 }𝑡≥0, P)
and a measure Q absolutely continuous with respect to P. Then, the process 𝐷 defined as

𝐷𝑡 =
𝑑Q

𝑑P

��
F𝑡 (4.8)

is a uniformly integrable martingale. Moreover, if the two measures are equivalent, i.e., P ≪ Q as well, then 𝐷 is strictly
positive.

Define the map E such that

E(𝐿) = exp
(
𝐿 − 1

2 ⟨𝐿, 𝐿⟩
)

(4.9)

where 𝐿 is a martingale of the form

𝐿𝑡 =

∫ 𝑡

0
𝑏𝑠𝑑𝐵𝑠 and ⟨𝐿, 𝐿⟩𝑡 =

∫ 𝑡

0
𝑏2𝑠𝑑𝑠. (4.10)

For now, 𝑏 is taken to be adapted; we will make the integrability conditions more explicit in the theorem statements.

Remark 4.6. The brackets denote the quadratic variation process, or in the case when the arguments are different,
the covariation process; more simply, they are called the bracket process. For two martingales 𝑋 and 𝑌 , the bracket
process ⟨𝑋,𝑌 ⟩ is the unique process such that𝑋𝑡𝑌𝑡 −⟨𝑋,𝑌 ⟩𝑡 is a martingale. In our case when dealing with diffusions,
the bracket process is the “𝑑𝑡” term after taking the product 𝑋𝑌 . In particular, for Itô processes

𝑋 =

∫ ·

0
𝑏𝑋𝑠 𝑑𝑠 +

∫ ·

0
𝜎𝑋𝑠 𝐵𝑠 (4.11)

and 𝑌 defined similarly, the bracket is

⟨𝑋,𝑌 ⟩𝑡 =
∫ 𝑡

0
𝜎𝑋𝑠 𝜎

𝑌
𝑠 𝑑𝑠. (4.12)

Proposition 4.7. Let 𝐷 be a martingale adapted to the natural filtration of some Brownian motion 𝐵. Then, there exists
an Itô process 𝐿 such that 𝐷 = E(𝐿). Moreover, 𝐿 takes the form

𝐿𝑡 = log𝐷0 +
∫ 𝑡

0
𝐷−1
𝑠 𝑑𝐷𝑠 = log𝐷0 +

∫ 𝑡

0
𝑏𝑠𝐷

−1
𝑠 𝑑𝐵𝑠 . (4.13)

Proof. By the martingale representation theorem, we know that there must be a 𝑏 such that 𝐷 =
∫ ·
0 𝑏𝑠𝑑𝐵𝑠 . Now, by

Itô’s formula, we get that

log𝐷𝑡 = log𝐷0 +
∫ 𝑡

0

𝑑𝐷𝑠

𝐷𝑠

− 1
2

∫ 𝑡

0

𝑑 ⟨𝐷, 𝐷⟩𝑠
𝐷2
𝑠

= log𝐷0 +
∫ 𝑡

0

𝑏𝑠𝑑𝐵𝑠

𝐷𝑠

− 1
2

∫ 𝑡

0

𝑏2𝑠𝑑𝑠

𝐷2
𝑠

. (4.14)

Taking 𝐿 to be of the form claimed verifies that 𝐷 = E(𝐿).
□
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Remark 4.8 (Local martingales). The above proposition, as well as what is about to proceed, can be generalized. In
particular, we can drop the condition that 𝐷 is adapted to a filtration of Brownian motion and replace it with the
general notion of a local martingale—𝑀 is a local martingale if there exists a sequence of stopping times 𝜏𝑛 ↑ ∞
such that the stopped process 𝑀𝑡∧𝜏 is a uniformly integrable martingale. However, we will not have Itô integrals
appearing and the Lebesgue integration term will be replaced by integration with respect to the quadratic variation
process ⟨𝐷, 𝐷⟩. It happens that we know the quadratic variation process of Itô processes.

Girsanov’s theorem identifies a process as Brownian motion. The proposition below states that if the quadratic
variation of the process is 𝑡 , then it is a Brownian motion. This will crucially play a role in the proof.

Proposition 4.9 (Lévy’s characterization of Brownian motion). Let 𝐵 be an adapted (to some filtration) process with
continuous sample paths. Then, the following are equivalent:

1. 𝐵 is a 𝑑-dimensional Brownian motion,

2. the components 𝐵𝑖 ’s are martingales and 𝐵𝑖𝐵 𝑗 − 𝛿𝑖 𝑗𝑡 are martingales.

Proof. We know item 1 implying item 2, so we want to show the converse. The full proof can be found in [9, Theorem
3.3.16] or [10, Theorem 5.12], we highlight some key points below.

1. For any 𝜉 , we know that 𝜉 · 𝐵 and (𝜉 · 𝐵)2 − |𝜉 |2𝑡 are martingales.

2. By the previous proposition, we know that exp(𝑖𝜉 · 𝐵 + |𝜉 |2𝑡/2) is a martingale.

3. We can then deduce, using characteristic functions, that 𝐵 has Gaussian increments and increments are inde-
pendent via a conditioning argument.

□

We are now ready to prove Girsanov’s theorem. First, we give a version that uses the tools that we have, which
seems slightly awkward as we have avoided generality. To compensate, we will then give a more useful version for
diffusion processes after.

Theorem 4.10 (Girsanov). Let P and Q be mutually absolutely continuous. Define the process 𝐷𝑡 = 𝑑Q/𝑑P|F𝑡 be a
martingale adapted to the natural filtration of some Brownian motion 𝐵 and let 𝐿 be the process such that 𝐷 = E(𝐿).
Then,

�̃� = 𝐵 − ⟨𝐵, 𝐿⟩ (4.15)

is a Brownian motion under Q.

Proof. By Itô’s formula (with 𝑓 (𝑥,𝑦) = 𝑥𝑦), we have

�̃�𝑡𝐷𝑡 =

∫ 𝑡

0
�̃�𝑠𝑑𝐷𝑠 +

∫ 𝑡

0
𝐷𝑠𝑑�̃�𝑠 + ⟨𝐷, �̃�⟩𝑡 (4.16)

=

∫ 𝑡

0
�̃�𝑠𝑑𝐷𝑠 +

∫ 𝑡

0
𝐷𝑠𝑑𝐵𝑠 +

∫ 𝑡

0
𝐷𝑠𝑑 ⟨𝐵, 𝐿⟩𝑠 + ⟨𝐷, 𝐵⟩𝑡 (4.17)

=

∫ 𝑡

0
�̃�𝑠𝑑𝐷𝑠 +

∫ 𝑡

0
𝐷𝑠𝑑𝐵𝑠 (4.18)

where the last equality uses the fact that 𝑑𝐿𝑠 = 𝐷−1
𝑠 𝑑𝐷𝑠 . This shows that �̃�𝐷 is a martingale in P, which implies that

�̃� is a martingale in Q because for any 𝐴 ∈ F𝑠 ,

EP 1𝐴�̃�𝑡𝐷𝑡 = E
P 1𝐴�̃�𝑡𝐷𝑠 = E

Q 1𝐴�̃�𝑡 . (4.19)

Moreover, ⟨�̃�, �̃�⟩ = ⟨𝐵, 𝐵⟩ regardless of the underlying measure since P and Q are equivalent and the bracket process
can be seen as the probabilistic limit of the sum of pointwise product (cf. [10, Proposition 4.21]). Thus, by Lévy’s
characterization of Brownian motion, �̃� is a Brownian motion under Q. □
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Theorem 4.11 (Girsanov). Let 𝑏 be an adapted process such that for 𝐿 =
∫ ·
0 𝑏𝑠𝑑𝐵𝑠 , the process E(𝐿) is a uniformly

integrable martingale (cf. Proposition 4.13). Then, under the measure Q defined by the Radon-Nikodym derivative
𝑑Q/𝑑P = E(𝐿), the process

�̃�𝑡 = 𝐵𝑡 −
∫ 𝑡

0
𝑏𝑠𝑑𝑠 (4.20)

is a Brownian motion.

Proof. The proof follows from the first version of Girsanov with 𝐷 = E(𝐿). Uniform integrability is used so that
Q = 𝐷∞P is a well-defined Radon-Nikodym derivative by martinagle convergence. □

Remark 4.12 (Constructing weak solutions to SDEs). Let’s look at the second Girsanov’s theorem more carefully.
We are given a Brownian motion 𝐵 and we found a new Brownian motion (under a different measure) where

𝐵𝑡 =

∫ 𝑡

0
𝑏𝑠𝑑𝑠 + �̃�𝑡 . (4.21)

Now, consider the stochastic differential equation

𝑑𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡 )𝑑𝑡 + �̃�𝑡 . (4.22)

Then, Girsanov tells us that taking 𝑋 = 𝐵 and taking the Brownian motion to be �̃�, 𝑋 is a solution to the SDE under
measure Q. In other words, we have found a weak solution 𝑋 on the probability space (Ω, F ,Q) and Brownian
motion �̃�. Putting in on canonical space, we have that

𝑑Q𝐵−1

𝑑P𝐵−1 (𝑥) =
𝑑Law(sde)
𝑑Law(bm) (𝑥) = E

(∫ ·

0
𝑏𝑠𝑑𝑥𝑠

)
. (4.23)

The crucial assumption here is that𝐷 (or E(𝐿)) is a uniformly integrable martingale. While E(𝐿) is always a local
martingale if 𝐿 is a local martingale [10, Proposition 5.11], to do a change-in-measure, 𝐷 must be a true martingale.
The benefit of the first statement of Girsanov’s theorem is that this is automatically true. Nonetheless, the second
version is much more applicable. Below, we give conditions on the drift 𝑏 so that 𝐷 is a true (uniform) martingale.

Proposition 4.13 (Novikov’s criterion). Suppose 𝐿 =
∫ ·
0 𝑏𝑠𝑑𝐵𝑠 with 𝑏 such that

E exp
(
1
2 ⟨𝐿, 𝐿⟩∞

)
= E exp

(
1
2

∫ ∞

0
𝑏2𝑠𝑑𝑠

)
< ∞, (4.24)

then E(𝐿) is a uniformly integrable martingale.

Remark 4.14 (Uniformly-integrable or not). Uniform integrability above is mainly to make sure that the E(𝐿) is
valid at 𝑡 = ∞. If we only care about a finite time-window [0,𝑇 ] for some 𝑇 < ∞, it is sufficient to change all the ∞
to𝑇 . Moreover, uniform integrability is a non-issue for martingales on a finite-time interval. Nonetheless, Novikov’s
condition guarantees that E(𝐿) is a true martingale.

Proof of Proposition 4.13. The argument requires some lengthy estimates and clever uses of stopping times. We refer
the reader to [10, Theorem 5.23] for a proof for the general case and [16, Theorem 4.5.8] for the finite time-horizon
case. □

Remark 4.15 (Weak solutions continued). From the previous remark, for the finite time-horizon case, we can take
any bounded, measurable 𝑏 and a weak solution exists (no regularity required)! The weak solution can be shown to
be unique in law as well.

We conclude this subsection with a yet another useful version of Girsanov’s theorem.

Corollary 4.16 (Girsanov). Let 𝑋 be the Itô process

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏𝑋𝑠 𝑑𝑠 +

∫ 𝑡

0
𝜎𝑠𝑑𝐵𝑠 . (4.25)

21



where 𝜎𝑠 is invertible for all 𝑠 . Moreover, suppose 𝜎−1 (𝑏𝑌 − 𝑏𝑋 ) satisfy Novikov’s condition and define the measure Q
via the Radon-Nikodym derivative

𝑑Q

𝑑P
= E

(∫ ·

0
𝜎−1
𝑠 (𝑏𝑌𝑠 − 𝑏𝑋𝑠 )𝑑𝐵𝑠

)
. (4.26)

Then, under Q, the process

�̃�𝑡 = 𝐵𝑡 −
∫ 𝑡

0
𝜎−1
𝑠 (𝑏𝑌𝑠 − 𝑏𝑋𝑠 )𝑑𝑠 (4.27)

is a Brownian motion and 𝑋 is a (weak) solution to the stochastic differential equation

𝑑𝑌𝑡 = 𝑏
𝑌
𝑡 𝑑𝑡 + 𝜎𝑡𝑑�̃�𝑡 . (4.28)

Proof. The fact that �̃� is a Brownian motion under Q follows from the previous statements of Girsanov’s theorem.
We only need to check that 𝑋 (driven by �̃�) under Q has the same law as 𝑌 :

𝑑𝑋𝑡 = 𝑏
𝑋
𝑡 𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡 = 𝑏𝑋𝑡 𝑑𝑡 + 𝜎𝑡𝑑 (�̃�𝑡 + 𝜎−1

𝑡 (𝑏𝑌𝑡 − 𝑏𝑋𝑡 )𝑑𝑠) = 𝑏𝑌𝑡 𝑑𝑡 + 𝜎𝑡𝑑�̃�𝑡 . (4.29)

□

4.2 The action functional and large deviations To motivate the usefulness of Girsanov theorem, we take
a detour to the theory of large deviations. In particular, let 𝐵 be a Brownian motion, we’re concerned with the
convergence:

lim
𝜖→0

𝜖𝐵 → 0 (4.30)

in the space of continuous functions C([0, 1];R) equipped with the uniform metric. More specifically, we’re inter-
ested in the rate of convergence,

P(𝜖𝐵 ∈ 𝐵ℎ (𝛿)) ≈ 𝑒−𝜖
−2𝐼 (ℎ) (4.31)

for some ball 𝐵ℎ (𝛿) and rate 𝐼 that depends on the choice of ℎ ∈ C([0, 1];R). This is the classic Freidlin-Wentzell
small-noise limit of Brownian motion, which can be generalized to the convergence of SDEs to the corresponding
ODE [7]. In this case, the rate function 𝐼 is the “action functional” from before:

𝐼 (ℎ) =
{
1
2
∫ 1
0

¤ℎ2𝑡𝑑𝑡 if ℎ ∈ H ,

+∞ otherwise
(4.32)

where H is the Cameron-Martin space with elements such that ℎ0 = 0. This restriction is necessary for the sanity
check that 𝐼 (ℎ) = 0 if and only if ℎ ≡ 0.

The proof of large deviation principles are usually separated into upper and lower bounds as they require different
techniques. We give the full proof of the lower bound (often the less obvious one) below as it applies Girsanov’s
theorem.

Proposition 4.17 (Large deviation lower bound). For any 𝛿 > 0 and ℎ ∈ H , we have

lim inf
𝜖→0

𝜖2 logP(𝜖𝐵 ∈ 𝐵𝛿 (ℎ)) ≥ −𝐼 (ℎ). (4.33)

Proof. Using the fact that {𝜖𝐵 ∈ 𝐵𝛿 (ℎ)} = {𝐵 ∈ 𝐵𝛿𝜖−1 (𝜖−1ℎ)}, by Girsanov/Carmeron-Martin, we have that

P(𝜖𝐵 ∈ 𝐵𝛿 (ℎ)) =
∫
𝐵
𝛿𝜖−1 (0)

exp
(
−𝜖−1

∫ 𝑇

0
¤ℎ𝑡𝑑𝑥𝑡 −

1
2𝜖2

∫ 𝑇

0
| ¤ℎ𝑡 |2𝑑𝑡

)
W(𝑑𝑥) (4.34)

= exp
(
−𝜖−2𝐼 (ℎ)

) ∫
𝐵
𝛿𝜖−1 (0)

exp
(
−𝜖−1

∫ 𝑇

0
¤ℎ𝑡𝑑𝑥𝑡

)
W(𝑑𝑥) (4.35)
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whereW is the Wiener measure. First, observe that we can choose 𝜖 such thatW(𝐵𝛿𝜖−1 (0)) is anything we want; we
will take this to be at least 3/4. Then, by Chebyshev, we see that

W

(∫ 𝑇

0
¤ℎ𝑡𝑑𝑥𝑡 ≥ 2

√︁
2𝐼 (ℎ)

)
≤
E

∫ 𝑇

0
¤ℎ2𝑡𝑑𝑡

8𝐼 (ℎ) =
1
4 , (4.36)

this means that exponentiating both sides gives

W

(
exp

(
−𝜖−1

∫ 𝑇

0
¤ℎ𝑡𝑑𝑥𝑡

)
≥ exp

(
−2𝜖−1

√︁
2𝐼 (ℎ)

))
≥ 3

4 . (4.37)

Let 𝐴 be the event above. Combining these two bounds, we can get that

P(𝜖𝐵 ∈ 𝐵𝛿 (ℎ)) ≥ exp
(
−𝜖−2𝐼 (ℎ)

) ∫
𝐵
𝛿𝜖−1 (0)∩𝐴

exp
(
−𝜖−1

∫ 𝑇

0
¤ℎ𝑡𝑑𝑥𝑡

)
W(𝑑𝑥) (4.38)

≥ exp
(
−𝜖−2𝐼 (ℎ) − 2𝜖−1

√︁
2𝐼 (ℎ)

)
W(𝐵𝛿𝜖−1 (0) ∩𝐴) (4.39)

≥ 1
2 exp

(
−𝜖−2𝐼 (ℎ) − 2𝜖−1

√︁
2𝐼 (ℎ)

)
(4.40)

for small enough 𝜖 . The statement then follows from taking the logarithm and applying the 𝜖2 scaling (the second
term on the exponent vanishes in the limit). □

The upper bound proceeds via approximation, which we will not prove. Interested readers can consult [13,
Lemma VIII.2.10]. For completeness, we state the final large deviation principle.

Theorem 4.18 (Wentzell-Friedlin). For any Borel set 𝐴 in C([0,𝑇 ];R), we have

− inf
𝑓 ∈int𝐴

𝐼 (𝑓 ) ≤ lim inf
𝜖→0

𝜖2 logP(𝜖𝐵 ∈ 𝐵𝛿 (ℎ)) ≤ lim sup
𝜖→0

𝜖2 logP(𝜖𝐵 ∈ 𝐵𝛿 (ℎ)) ≤ − inf
𝑓 ∈cl𝐴

𝐼 (𝑓 ). (4.41)

Remark 4.19 (Exponential tilts in large deviation theory). For those familiar with large deviation principles, the
proof technique (on a high level) is not unfamiliar. The typical proof of Cramér’s theorem uses an exponential tilt to
make the rare event—empirical mean being away from the true mean—not rare; the rate is then extrapolated from
the tilt factor. The same idea occurred here: we studied the rare event that 𝜖𝐵 is away from zero by tilting it via
Girsanov to a form amendable to analysis.

Remark 4.20 (Most of C space is empty). This large deviation principle makes precise the intuition that most of
C space is empty (not attained by Brownian motion). Rather, it clusters around neighborhood of elements in the
Carmeron-Martin space, which is much more regular than a “typical” continuous path.

The Freidlin-Wentzell theory follows the classical recipe for proving large deviation principles. A more modern
theory due to Dupuis and Ellis [4, 5] utilizes techniques from weak convergence and variational representations.
However, Girsanov did not become obsolete in this new paradigm. Rather, due to the intricate connection of varia-
tional forms, relative entropy and weak convergence, Girsanov plays an important role in the analysis nonetheless.

Recall that for two measure 𝜇 and 𝜈 , we define the relative entropy as

R(𝜈 ∥𝜇) =
{∫

log 𝑑𝜈
𝑑𝜇
𝑑𝜈 if 𝜈 ≪ 𝜇

+∞ otherwise .
(4.42)

The following proposition represents exponential functionals—a.k.a. moment generating function or partition func-
tion in statistical physics—as a problem of minimizing expectation while paying a relative entropy cost.

Proposition 4.21 (Donsker-Varadhan). Let X be a Polish space and P(X) be the set of probability measures on X.
Then, for any bounded, measurable 𝑓 : X → R and measure 𝜇 ∈ P(X),

− log
∫

𝑒−𝑓 (𝑥 )𝜇 (𝑑𝑥) = inf
𝜈∈P(X)

{∫
𝑓 (𝑥)𝜈 (𝑑𝑥) + R(𝜈 ∥𝜇)

}
. (4.43)
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Proof. First, notice that if we let 𝜈∗ be the exponential tilt, i.e.,

𝜈∗ (𝑑𝑥) = 1
𝑍
𝑒−𝑓 (𝑥 )𝜇 (𝑑𝑥) where 𝑍 =

∫
𝑒−𝑓 (𝑥 )𝜇 (𝑑𝑥), (4.44)

then the right-hand side becomes∫
𝑓 (𝑥)𝜈∗ (𝑑𝑥) + R(𝜈∗∥𝜇) =

∫
𝑓 (𝑥)𝜈∗ (𝑑𝑥) −

∫
𝑓 (𝑥)𝜈∗ (𝑑𝑥) − log𝑍 = − log𝑍 . (4.45)

Now, by Jensen, we see that for any 𝜈 ≪ 𝜇,

− log
∫

𝑒−𝑓 (𝑥 )𝜇 (𝑑𝑥) = − log
∫

𝑒−𝑓 (𝑥 )
𝑑𝜈

𝑑𝜇
(𝑥)𝜈 (𝑑𝑥) ≤

∫
𝑓 (𝑥)𝜈 (𝑑𝑥) + R(𝜈 ∥𝜇) (4.46)

and the equality is achieved at 𝜈∗. □

Theorem 4.22 (Boué-Dupuis). Let 𝑓 : C([0, 1];R) be a bounded and measurable, and let 𝐵 be a standard Brownian
motion. Then,

− logE 𝑒−𝑓 (𝐵) = inf
𝜈∈A

{
E 𝑓

(
𝐵 +

∫ ·

0
𝜈𝑠𝑑𝑠

)
+ 1
2

∫ 1

0
|𝜈𝑠 |2𝑑𝑠

}
(4.47)

where A is the set of progressively-measurable process with 𝐸
∫ 1
0 |𝜈𝑠 |2𝑑𝑠 < ∞.

Proof. We provide just the idea of the proof; interested reader can consult the original paper [5, Theorem 3.1] or the
reference book [4, Theorem 8.3].

First, we are in the setting where Donsker-Varadhan (Proposition 4.21) applies. Just applying the variational
formula gives

− logE 𝑒−𝑓 (𝐵) = inf
Q

{
EQ 𝑓 (𝐵) + R(Q∥P)

}
. (4.48)

where Q is some other measure on the probability space. However, we know that the only measures that are abso-
lutely continuous to P are those that shift the Brownianmotion by elements in the Cameron-Martin space. Therefore,
to have finite relative entropy cost, we can restrict ourselves to these measures without loss of generality. In partic-
ular, we let Q be such that

𝑑Q

𝑑W
(𝑥) = exp

(∫ 1

0
𝜈𝑠𝑑𝑥𝑠 −

1
2

∫ 1

0
|𝜈𝑠 |2𝑑𝑠

)
. (4.49)

for some 𝜈 ∈ H .
Now, we parse through the terms inside the infimum. By Girsanov, we know that there is �̃� = 𝐵 −

∫ ·
0 𝜈𝑠𝑑𝑠 that is

a Q-Brownian motion. Therefore,

EQ 𝑓 (𝐵) = EQ 𝑓
(
�̃� +

∫ ·

0
𝜈𝑠𝑑𝑠

)
(4.50)

and

R(Q∥P) = EQ log exp
(∫ 1

0
𝜈𝑠𝑑𝐵𝑠 −

1
2

∫ 1

0
|𝜈𝑠 |2𝑑𝑠

)
= EQ

∫ 1

0
𝜈𝑠𝑑�̃�𝑠 +

1
2

∫ 1

0
|𝜈𝑠 |2𝑑𝑠 =

1
2 E
Q

∫ 1

0
|𝜈𝑠 |2𝑑𝑠. (4.51)

since the Itô integral has zero mean. The only to show now is that

inf
𝜈

{
EQ 𝑓

(
�̃� +

∫ ·

0
𝜈𝑠𝑑𝑠

)
+ 1
2

∫ 1

0
|𝜈𝑠 |2𝑑𝑠

}
?
= inf

𝜈

{
E 𝑓

(
𝐵 +

∫ ·

0
𝜈𝑠𝑑𝑠

)
+ 1
2

∫ 1

0
|𝜈𝑠 |2𝑑𝑠

}
, (4.52)

and this is in fact non-trivial and requires careful approximations. □

This variational representation turned out indispensible for the proof of small-noise large deviation principle via
weak convergence. It also found its way to many other areas of probability as it gives a control-theoretic interpreta-
tion to a static yet important quantity. In terms of the main point of the note, we showed that relative entropy works
well with Girsanov as the logarithm and exponential cancel. This enables easier entropy estimates that turn out to
be useful in other areas of probability as well.
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5 Long-time behavior of Markov processes

Suppose we have a discrete-time finite-state Markov chain (𝑋𝑡 )𝑡 ∈N ∈ X. Then, we know that the semigroup can be
identified with a matrix 𝑃 : X × X → R. Then, we know that there exists a stationary distribution 𝜋 ∈ P(X) such
that

𝜋𝑃 =

∫
𝑃 (𝑥, ·)𝜋 (𝑑𝑥) = 𝜋. (5.1)

Moreover, for irreducible (can get to any state) and aperiodic (doesn’t go in circles), then Law(𝑋𝑡 ) → 𝜋 as 𝑡 → ∞
for any initial conditions. Even better, if we let 𝑃 be diagonalizable, then we know that

𝑑TV (Law(𝑋𝑡 ), 𝜋) ≤ 𝜆𝑡1𝑑TV (Law(𝑋0), 𝜋) (5.2)

where 𝜆1 is the second largest eigenvalue of 𝑃 . We would like to establish similar results for continuous-timeMarkov
chains, that is, existence, uniqueness, and convergence rate towards the stationary distribution.

For this section, we work with a diffusion process 𝑋 with drift and diffusion coefficients 𝑏 and 𝜎 respectively. As
we’re working with laws, we only require weak existence of solutions, though more regularity might be implicit in
the conditions we state.

5.1 Fokker-Planck and stationarity Deriving criteria for when stationary distribution exists is actually quite
simple. First, by stationarity, we’re seeking a measure 𝜋 ∈ P(R𝑑 ) such that for any bounded 𝑓 , if we initialize𝑋0 ∼ 𝜋 ,

E 𝑓 (𝑋𝑡 ) = EE[𝑓 (𝑋𝑡 ) |𝑋0] =
∫
E[𝑓 (𝑋𝑡 ) |𝑋0 = 𝑥]𝜋 (𝑑𝑥) = E 𝑓 (𝑋0). (5.3)

For reasons we’ll see soon, let’s temporarily take 𝑓 ∈ 𝐶2
0 (R𝑑 ). Rearranging the above and adding a factor of 𝑡−1 gives

1
𝑡

∫
E[𝑓 (𝑋𝑡 ) |𝑋0 = 𝑥] − 𝑓 (𝑥)𝜋 (𝑑𝑥) = 0. (5.4)

Lastly, since 𝑓 is bounded, we can taking the limit as 𝑡 → 0 to get∫
𝐿𝑓 (𝑥)𝜋 (𝑑𝑥) = 0 (5.5)

where 𝐿 is the generator of 𝑋 that takes the form

𝐿𝑓 =

𝑑∑︁
𝑖=1

𝑏𝑖𝜕𝑖 𝑓 +
1
2

𝑑∑︁
𝑖, 𝑗=1

𝜎𝑖 𝑗 𝜕𝑖 𝑗 𝑓 = 𝑏 · ∇𝑓 + tr[𝜎𝜎⊺∇2 𝑓 ] . (5.6)

Definition 5.1. We say 𝜋 is a stationary distribution of the diffusion 𝑋 if it satisfies∫
𝐿𝑓 (𝑥)𝜋 (𝑑𝑥) = 0

for all 𝑓 ∈ 𝐶2
0 (R𝑑 ).

Now, consider 𝐿2 = 𝐿2 (R𝑑 ;𝑑𝑥) equipped with the Lebesgue measure and the standard inner product. If 𝜋 admits
a density—which, for notational simplicity, we will identify 𝑑𝜋

𝑑𝑥
↦→ 𝜋—then we can alternatively write the condition

for the stationary distribution as∫
𝐿𝑓 (𝑥)𝜋 (𝑑𝑥) = ⟨𝐿𝑓 , 𝜋⟩ = ⟨𝑓 , 𝐿∗𝜋⟩ =⇒ 𝐿∗𝜋 = 0 (5.7)

where 𝐿∗ denotes the adjoint of the operator 𝐿 when viewed as a(n unbounded) linear operator in 𝐿2. The implication
holds as the above relation must hold for a dense set of 𝑓 .
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The running example of this section will be the Langevin dynamics, which are solutions to the sde

𝑑𝑋𝑡 = −∇𝑈 (𝑋𝑡 )𝑑𝑡 +
√︄

2
𝛽
𝑑𝐵𝑡 (5.8)

where 𝑈 : R𝑑 → R is some potential (we will add more qualifiers later) and 𝛽 > 0 is the inverse temperature. From
what we know thus far, we can write the generator as

𝐿𝑓 = −∇𝑈 · ∇𝑓 + 𝛽−1Δ𝑓 . (5.9)

The special property of Langevin diffusions is that the stationary distribution takes the form of a Gibbs measure. We
can try to calculate this via the adjoint relation:

𝐿∗𝜋 = ∇ · (𝜋∇𝑈 ) + 𝛽−1Δ𝜋 = 0. (5.10)

Now, we do some clever manipulations.

𝛽−1Δ𝜋 + ∇ · (𝜋∇𝑉 ) = ∇ · (𝛽−1∇𝜋 + 𝜋∇𝑉 ) = ∇ · (𝜋 (𝛽−1∇ log𝜋 + ∇𝑉 )) (5.11)

Plugging in log𝜋 = −𝛽𝑉 + const gives zero, which means that

𝜋 (𝑑𝑥) ∝ exp (−𝛽𝑉 (𝑥)) 𝑑𝑥. (5.12)

The concept of reversibility becomes important in the following two subsections. Broadly speaking, a Markov
process is reversible if, once in stationary, the dynamics forward in time is the same as the dynamics backward in
time.

Definition 5.2. A Markov process is said to be reversible if the associated semigroup 𝑃𝑡 is self-adjoint as a bounded
linear operator in 𝐿2 (𝜋). Moreover, we will say 𝜋 is a reversible measure.

Remark 5.3 (Non-equilibrium steady-state). In statistical physics, we say a system is at equilibrium when the pro-
cess is at stationary and the stationary distribution takes the form of a Gibbs distribution. When the stationary
distribution is not Gibbs, physicists say that the system is in non-equilibrium steady-state. Terrible terminology, but
they make the rules...

In light of the remark, one can check (via integration-by-parts and using the explicit form of 𝜋 ) that Langevin
diffusions are always reversible.

We will close this subsection by talking about how the law 𝜇𝑡,𝑥 ≔ Law(𝑋𝑡 |𝑋0 = 𝑥) evolves in time.

Proposition 5.4 (Fokker-Planck). Suppose 𝜇𝑡,𝑥 admist a density with respect to the Lebesgue measure for all 𝑡 ≥ 0, 𝑥 ∈
R𝑑 . Then, the density obeys

𝜕𝑡 𝜇𝑡,𝑥 = 𝐿∗𝜇𝑡 . (5.13)

Proof. First, we know that for any 𝑓 ∈ 𝐶2
0 (R𝑑 ), we have

𝜕𝑡

∫
𝑓 (𝑦)𝜇𝑡,·𝑑𝑦 = 𝜕𝑡𝑃𝑡 𝑓 = 𝑃𝑡𝐿𝑓 (5.14)

where 𝑃𝑡 is the semigroup associated with 𝑋/𝐿. Moreover, for every 𝑥 ∈ R𝑑 ,

𝑃𝑡𝐿𝑓 (𝑥) =
∫

𝐿𝑓 (𝑦)𝑃𝑡 (𝑥, 𝑑𝑦) =
∫

𝐿𝑓 (𝑦)𝜇𝑡,𝑥 (𝑦)𝑑𝑦 =

∫
𝑓 (𝑦)𝐿∗𝜇𝑡,𝑥 (𝑦)𝑑𝑦. (5.15)

Again, since 𝑓 is dense in 𝐿2, the above equality implies that 𝐿∗𝜇𝑡,𝑥 = 𝜕𝑡 𝜇𝑡,𝑥 . □
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5.2 Convergence via the log-Sobolev inequality The existence and uniqueness questions turns out to be
questions about the null space of an unbounded operator. The convergence question is a bit more subtle. There are
certainly many approach, but we will take a popular one. The statements we will prove will be of the form:

if [operator] satisfies [famous name] inequality =⇒ [fluctuation] decreases exponentially. (5.16)

First, we need to establish somemore operators related to aMarkov process beyond the semigroup and generator.

Definition 5.5. Consider a Markov process with generator 𝐿. Let A ⊂ 𝐷 (𝐿) such that 𝑓 𝑔 ∈ A for 𝑓 , 𝑔 ∈ 𝐷 (𝐿).
Then, the carré du champ operator Γ : A ×A → A is a bilinear operator defined as

Γ(𝑓 , 𝑔) = 1
2 [𝐿(𝑓 𝑔) − 𝑓 𝐿𝑔 − 𝑔𝐿𝑓 ] . (5.17)

Moreover, we define the Dirichlet energy E(𝑓 , 𝑔) =
∫
Γ(𝑓 , 𝑔)𝑑𝜋 where 𝜋 is the stationary distribution of the Markov

process.

Remark 5.6 (Square of the field). In French, carré du champ means “square of the field,” which came from taking 𝐿
to be the generator of the Langevin diffusion:

Γ(𝑓 , 𝑓 ) = 1
2

[
Δ(𝑓 2) − ∇𝑈 · ∇(𝑓 2) − 2𝑓 (Δ𝑓 − ∇𝑈 · ∇𝑓 )

]
= ∥∇𝑓 ∥2 . (5.18)

More generally, we have that Γ(𝑓 , 𝑔) = ∇𝑓 · ∇𝑔. We write E(𝑓 ) = E(𝑓 , 𝑓 ).

It turns out that under reversibility, the carré du champ operator behaves nicely. We will exploit the properties
listed below to define and analyze important operators to come.

Proposition 5.7 (Properties of carré du champ). Let 𝐿 be the generator of someMarkov process with stationarymeasure
𝜋 . Then,

1. (positivity) Γ(𝑓 , 𝑓 ) ≥ 0,

2. (integration-by-parts) if 𝜋 is reversible, then∫
Γ(𝑓 , 𝑔)𝑑𝜋 = −

∫
𝑓 𝐿𝑔𝑑𝜋 . (5.19)

3. (positivity) if 𝜋 is reversible, −𝐿 is a positive operator, i.e., ⟨𝑓 ,−𝐿𝑓 ⟩𝜋 ≥ 0 for all 𝑓 .

Proof. We prove each item in the respective order.

1. By Jensen’s inequality, we have that 𝑃𝑡 𝑓 2 ≥ (𝑃𝑡 𝑓 )2. Therefore,

𝐿𝑓 2 = lim
𝑡→0

1
𝑡
(𝑃𝑡 𝑓 2 − 𝑓 2) ≥ lim

𝑡→0

1
𝑡
((𝑃𝑡 𝑓 )2 − 𝑓 2) = 2𝑓 𝐿𝑓 . (5.20)

From which, the positivity follows from the definition of Γ.

2. By 𝜋 being a stationary distribution,
∫
𝐿(𝑓 𝑔)𝑑𝜋 = 0. Then, the integration-by-parts formula simply follows

from reversibility.

3. The positivity of −𝐿 follows immediately from the positivity of Γ and integration-by-parts.

□

Remark 5.8 (Domain of Dirichlet energy). Under reversibility, the Dirichlet energy actually admits a much simpler
form than defined. This means that the domain of E is actually bigger than that of Γ, i.e.,𝐷 (E) is at least𝐷 (𝐿)×𝐷 (𝐿).
In fact, we can be a bit more sophisticated. We can define

E(𝑓 ) = lim
𝑡→0

1
𝑡

∫
𝑓 (𝑓 − 𝑃𝑡 𝑓 )𝑑𝜋 (5.21)

for 𝑓 ∈ 𝐿2 (𝜋) and 𝐷 (E) be the set of functions for which the limit exists. It turns out this domain is even bigger and
we can define E(𝑓 , 𝑔) via polarization identity of Hilbert spaces. For more details, see [1, Section 1.7.1].
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From now on, we will identify a Markov process with the carré du champ operator Γ and stationary distribution
𝜋 .

The first approach in proving ergodicity of a Markov process is via the log-Sobolev inequality. The protagonist
of this functional inequality is the entropy.

Definition 5.9. Let 𝜇 be a probability measure, then the Entropy functional is defined as

Ent𝜇 [𝑓 ] = E𝜇 𝑓 log 𝑓 + E𝜇 𝑓 log(E𝜇 𝑓 ) (5.22)

for 𝑓 ≥ 0. Notice that if 𝑓 = 𝑑𝜈/𝑑𝜇 for some 𝜈 ≪ 𝜇, Ent𝜇 [𝑓 ] = R(𝜈 ∥𝜇).

Definition 5.10.We say a Markov process (Γ, 𝜋) satisfies a (modified) log-Sobolev inequality with constants 𝑐 > 0,
written as lsi(𝑐), if for any 𝑓 ∈ E(𝐷),

Ent𝜋 [𝑓 ] ≤
𝑐

2E(𝑓 , log 𝑓 ). (5.23)

Now, we are ready for our first convergence statement.

Theorem 5.11 (Convergence via lsi). If 𝜋 satisfies a lsi(𝑐), then for every non-negative integrable 𝑓 ,

Ent𝜋 [𝑃𝑡 𝑓 ] ≤ 𝑒−2𝑡/𝑐 Ent𝜋 [𝑓 ] . (5.24)

Proof. The proof follows from differentiating the entropy functional. First, notice that E 𝑃𝑡 𝑓 = E 𝑓 , so the time
derivative of the latter term in the entropy vanishes. Therefore, for 𝑓 ∈ 𝐷 (E), we have

𝑑

𝑑𝑡
Ent𝜋 [𝑃𝑡 𝑓 ] =

∫
(1 + log 𝑃𝑡 𝑓 )𝐿𝑃𝑡 𝑓 𝑑𝜋 = −

∫
Γ(𝑃𝑡 𝑓 , 1 + log 𝑃𝑡 𝑓 )𝑑𝜋 = −E(𝑃𝑡 𝑓 , log 𝑃𝑡 𝑓 ) . (5.25)

Using the log-Sobolev inequality and Gronwall, we get the desired bound. □

In case the above representation is not clear already, this proves that the exponential convergence to 𝜋 in the
sense of relative entropy.

Corollary 5.12 (Convergence in relative entropy). For any initial distribution 𝜇0, if 𝜋 satisfies a lsi(𝑐), then

R(𝜇𝑡 ∥𝜋) ≤ 𝑒−2𝑡/𝑐R(𝜇0∥𝜋) (5.26)

where 𝜇𝑡 is the law of the process at time 𝑡 .

Of course, proving a lsi is a task in and of itself, but with the structure of Langevin diffusions, the problem usually
boils down to the convexity of the potential𝑈 . We give a well-known result below.

Theorem 5.13 (Bakry-Émery). A Markov semigroup is said to satisfy the Bakry-Émery criterion with constant 𝛼 > 0
if

Γ2 (𝑓 , 𝑓 ) =
1
2 [𝐿Γ(𝑓 , 𝑓 ) − 2𝛾 (𝑓 , 𝐿𝑓 )] ≥ 𝛼Γ(𝑓 , 𝑓 ), (5.27)

which implies an lsi with constant at most 1/𝛼 . In particular, a Langevin diffusion satisfies the Bakry-Émery criterion
if and only the potential𝑈 is 𝛼-strongly convex, i.e.,

𝑈 (𝑦) −𝑈 (𝑥) ≥ ∇𝑈 ⊺ (𝑦 − 𝑥) + 𝛼2 ∥𝑦 − 𝑥 ∥
2 . (5.28)

5.3 Convergence via the Poincaré (spectral gap) inequality On the other hand, the Poincaré inequality
deals with convergence in variance. In fact, the Poincaré inequality is more akin to the spectral analysis we did in
the discrete-time case. We will make this clear in a second.

Definition 5.14.We say a Markov Process (Γ, 𝜋) satisfies a Poincaré inequality, written as p(𝑐), if for all 𝑓 ∈ 𝐷 (E),
we have

Var𝜋 [𝑓 ] ≤ 𝑐E(𝑓 ). (5.29)
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Remark 5.15 (Relation with eigengaps). Suppose 𝑓 is an eigenfunction of −𝐿 corresponding to eigenvalue 𝜆, and
(Γ, 𝜋) satifies p(𝑐). Then,

Var𝜋 [𝑓 ] =
∫

𝑓 2𝑑𝜋 ≤ 𝑐E(𝑓 ) = 𝑐
∫

𝑓 (−𝐿𝑓 )𝑑𝜋 = 𝑐𝜆

∫
𝑓 2𝑑𝜋, (5.30)

and we have that non-zero eigenvalues of −𝐿 satisfies 𝜆 ≥ 1/𝑐 .

Now, we present a similar convergence theorem as the lsi, but in terms of the variance.

Theorem 5.16 (Convergence via p). If 𝜋 is reversible satisfies a p(𝑐), then for every 𝑓 ∈ 𝐿2 (𝜋), we have that

Var𝜋 [𝑃𝑡 𝑓 ] ≤ 𝑒−2𝑡/𝑐Var𝜋 [𝑓 ] . (5.31)

Proof. The same as before, we differentiate with respect to time:

𝑑

𝑑𝑡
Var𝜋 [𝑃𝑡 𝑓 ] = 2

∫
𝑃𝑡 𝑓 𝐿𝑃𝑡 𝑓 = −2E(𝑓 ) (5.32)

where the second equality is by the integration-by-parts formula for the Dirichlet energy. Again, using the assumed
Poincaré inequality and Gronwall yields the desired bound. □
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