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Syllabus

The reading course will be an introduction to large deviation theory, using the following books/article as main
reference:

• Large Deviations by Frank den Hollander [2],

• Analysis and Approximation of Rare Events by Amarjit Budhiraja and Paul Dupuis [1].,

in addition to several other papers, cited below accordingly.

Week # Date Topic Reading
1 01/24 - 01/26 Theorem of Cramér and Sanov dH Chapter 1 & 2
2 01/29 - 02/02 Sanov’s Theorem via weak convergence BD Chapter 3.1
3 02/05 - 02/09 General large deviation principle dH Chapter 3
4 02/12 - 02/16 Large deviation for Markov Chains dH Chapter 4
5 02/21 - 02/23 Gartner-Ellis Theorem & Hypothesis testing dH Chapter 5 & 9
6 02/26 - 03/01 No meeting (D.C. travelling)
7 03/04 - 03/08 Representation for functionals of Brownian motion BD Chapter 3.2
8 03/11 - 03/15 Interacting diffusion dH Chapter 10
9 03/18 - 03/22 Importance sampling for rare events [3]
10 03/25 - 03/29 Spring Break!
11 04/01 - 04/05 Importance sampling continued
12 04/08 - 04/12 Cramer’s theorem is atyipcal! [4]
13 04/15 - 04/19 Representation for functionals of Poisson Processes BD Chapter 3.3
14 04/22 - 04/26 LDP for finite-state Markov chains BD Chapter 13.3
15 04/28 - 05/07 Weighted serve-the-longest-queue BD Chapter BD Chapter 13.2

The reading group will meet from 11 a.m. to 12 p.m. on Wednesdays. Exercises and additional reading materials
will be posted in the drop box folder.
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1 Canonical Examples of Large Deviation

Remark 1.1 (to add...). 1. geometry of random variable and its relationship to the rate function

2. relationship between tails of random variable (support of mgf) and the steepness/domain of rate function

1.1 Cramér’s and Sanov’s theorem

Theorem 1.2 (Cramér). Let (𝑋𝑖 ) be i.i.d. R-valued random variables with moment generating function 𝜑 (𝑡) defined on
everywhere. Let 𝑆𝑛 =

∑𝑛
𝑖=1𝑋𝑖 . Then, for all 𝑎 > E𝑋1,

lim
𝑛→∞

1
𝑛

logP(𝑆𝑛 > 𝑛𝑎) = −𝐼 (𝑎) (1.1)

with the rate function 𝐼 be of the form

𝐼 (𝑧) = sup
𝑡 ∈R

{𝑧𝑡 − log𝜑 (𝑡)}. (1.2)

Proof Sketch. First, without loss of generality, we will consider the case where 𝑎 = 0. This means that we want to
show

lim
𝑛→∞

1
𝑛

logP(𝑆𝑛 > 0) = −𝐼 (0) = log inf
𝑡 ∈R

𝜑 (𝑡) := log 𝜌. (1.3)

In the case when 𝑋1 ≤ 0, 𝜑 (𝑡) is decreasing and are straightfoward. We focus on the case where 𝑋1 can take positive
and negative values, giving a 𝜑 that is coercive.

Suppose the infimum of 𝜑 is achieved at 𝜏 , i.e., 𝜑 (𝜏) = 𝜌 . We will prove the upper and lower bounds separately.
The upper bound follows from a clever application of Chebyshev’s inequality:

P(𝑆𝑛 > 0) = P
(
𝑒𝜏𝑆𝑛 > 1

)
≤ 𝜑 (𝜏)𝑛 = 𝜌𝑛 . (1.4)

For the lower bound, let 𝜇 be the distribution function of 𝑋1, and we introduce the tilted measure 𝜇 with

𝜇 (𝑑𝑥) = 1
𝜌
𝑒𝜏𝑥𝜇 (𝑑𝑥). (1.5)

Note that 𝜇 ≪ 𝜇 as well by having a positive Radon-Nikodym derivative. Then, we can rewrite the desired probability
in terms of the tilted measure

P(𝑆𝑛 > 0) =
∫

∑
𝑖 𝑥𝑖>0

⊗𝑛𝑖=1𝜇 (𝑑𝑥𝑖 ) = 𝜌𝑛
∫

∑
𝑖 𝑥𝑖>0

𝑒−𝜏
∑

𝑖 𝑥𝑖 ⊗𝑛𝑖=1 𝜇 (𝑑𝑥𝑖 ) . (1.6)

It can be shown, via the Central Limit theorem for 𝑆𝑛—𝑆𝑛 under the tilted measure—has no contribution to the
exponential decay, i.e.,

lim inf
𝑛→∞

1
𝑛

logE 𝑒𝜏𝑆𝑛1𝑆𝑛>0 ≥ 0. (1.7)

□

Remark 1.3. Cramér’s theorem would also hold even if 𝜑 only exists in a neighborhood of zero, however, it will
require a different proof. To keep the proof as it, we can relax the condition to log𝜑 being steep, that is, let 𝐷𝜑 be
the domain for which 𝜑 is finite, then

lim
𝑡→𝜕𝐷𝜑

| (log𝜑)′ (𝑡) | → ∞. (1.8)

This is because log𝜑 being steep, convex, and smooth guarantees that the Legendre transform is defined everywhere.
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Definition 1.4. Let 𝜇, 𝜈 be probability measures with 𝜈 ≪ 𝜇. Then, the relative entropy is defined as

R(𝜈 ∥𝜇) = E𝜈 log
𝑑𝜈

𝑑𝜇
. (1.9)

Theorem 1.5 (Sanov). Let (𝑋𝑖 ) be i.i.d. random variables taking value in the finite set Γ = {1, . . . , 𝑟 } according to law
𝜌 . We equip the space of probability measures P(Γ) with the total variation distance, and let the empirical measure
𝐿𝑛 =

∑𝑛
𝑖=1 𝛿𝑋𝑖

. Then, for all 𝑎 > 0,

lim
𝑛→∞

1
𝑛

logP(𝐿𝑛 ∈ 𝐵𝑎 (𝜌)𝑐 ) = − inf
𝜈∈𝐵𝑎 (𝜌 )𝑐

R(𝜈 ∥𝜌) (1.10)

where 𝐵𝑎 (𝜌) is the ball of radius 𝑎 centered at 𝜌 .

Proof Sketch. We do combinatorics! Let 𝑘 ∈ Γ𝑛 be a sequence of possible outcome and 𝜈𝑛 (𝑘) be the corresponding
empirical measure. Then, for any 𝑛, there must be an empirical measure outside of 𝐵𝑎 (𝜌) that is the most likely to
occur; we call the probability of getting this empirical measure 𝑄𝑛 (𝑎), i.e.,

𝑄𝑛 (𝑎) = max
𝑘 :𝜈𝑛 (𝑘 ) ∈𝐵𝑎 (𝜌 )𝑐

𝑛!
𝑟∏
𝑠=1

𝜌
𝑘𝑠
𝑠

𝑘𝑠 !
. (1.11)

Then, knowing that the total number of possible empirical measures is
(
𝑛+𝑟
𝑟−1

)
, we first get the chain of inequality:

𝑄𝑛 (𝑎) ≤ P(𝐿𝑛 ∈ 𝐵𝑎 (𝜌)𝑐 ) ≤
(
𝑛 + 𝑟
𝑟 − 1

)
𝑄𝑛 (𝑎). (1.12)

Moreover, by Stirling’s formula, 𝑛−1 log𝜈𝑛 (𝑘) → −R(𝜈𝑛 (𝑘)∥𝜌) for any empirical measure 𝜈𝑛 (𝑘), including the one
that achieves 𝑄𝑛 (𝑎). Combined with the facts that the set of empirical measures is dense in P(Γ) and continuity of
𝜈 ↦→ R(𝜈 ∥𝜌), the statement follows. □

Remark 1.6. One way of linking Sanov’s theorem and Cramér’s theorem, at least in the finite-alphabet case, is via
the convex dual. It can be shown that both the rate function in Cramér’s theorem and the relative entropy (in the
first argument) are convex. Since Cramér’s theorem is about deviation from the mean, we fix E𝑋1 = 𝑧. Then, convex
duality says

inf
𝜈∈P(Γ)

{
𝑟∑︁
𝑠=1

𝜈𝑠 log
𝜈𝑠

𝜌𝑠
:
𝑟∑︁
𝑠=1

𝑠𝜌𝑠 = 𝑧

}
= sup
𝑡 ∈R

inf
𝜈∈P(Γ)

{
𝑟∑︁
𝑠=1

𝜈𝑠 log
𝜈𝑠

𝜌𝑠
+ 𝑡

(
𝑟∑︁
𝑠=1

𝑠𝜈𝑠 − 𝑧
)

:
𝑟∑︁
𝑠=1

𝜈𝑠 = 1

}
(1.13)

= sup
𝑡 ∈R

{
𝑡𝑧 − log

𝑟∑︁
𝑠=1

𝑒𝑡𝑠𝜌𝑠

}
. (1.14)

Formally, deriving the relationship between Cramér’s theorem and Sanov’s thoerem is done via the contraction prin-
ciple, as demonstrated below.

Proposition 1.7 (Contraction Principle: Sanov to Cramér). Let (𝑋𝑖 ) be i.i.d. random variables with the same set up as
the previous (Sanov) theorem. For 𝜈 ∈ P(Γ), denote𝑚𝜈 =

∑
𝑠 𝑠𝜈𝑠 . Then, for all 𝑎 > 0,

lim
𝑛→∞

1
𝑛

logP
(

1
𝑛
𝑆𝑛 ∈ 𝐵𝑎 (𝑚𝜌 )𝑐

)
= − inf

𝑧∈𝐵𝑎 (𝑚𝜌 )𝑐
𝐼 (𝑧) (1.15)

where the rate function takes the variational form

𝐼 (𝑧) = inf
𝜈∈P(Γ)

{
R(𝜈 ∥𝜌) :𝑚𝜌 = 𝑧

}
. (1.16)

Proof. Let’s first rewrite {
1
𝑛
𝑆𝑛 ∈ 𝐵𝑎 (𝑚𝜌 )𝑐

}
= {𝐿𝑛 ∈ �̂�𝑎 (𝜌)𝑐 } (1.17)
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where

�̂�𝑎 (𝜌) = {𝜈 ∈ P(Γ) : |𝑚𝜈 −𝑚𝜌 | ≤ 𝑎}. (1.18)

Then, adapting the proof to general open sets, it follows from Sanov that

lim
𝑛→∞

1
𝑛

logP
(

1
𝑛
𝑆𝑛 ∈ 𝐵𝑎 (𝑚𝜌 )𝑐

)
= − inf

𝜈∈�̂�𝑎 (𝜌 )𝑐
R(𝜈 ∥𝜌) = − inf

𝑧∈𝐵𝑎 (𝑚𝜌 )𝑐
inf

𝜈∈P(Γ) :𝑚𝜈=𝑧
R(𝜈 ∥𝜌) (1.19)

where the last equality follows from taking slices of �̂�𝑎 (𝜌)𝑐 . □

Proposition 1.8 (Contraction Principle: finite to countable alphabets). Let (𝑋𝑖 ) be i.i.d. random variables that has
law 𝜌 on N. We equip the space the probability measures P(N) with the total variation distance. Then, for any 𝑎 > 0,
then letting 𝐽 (𝑎) = inf𝜈∈𝐵𝑎 (𝜌 )𝑐 R(𝜈 ∥𝜌), we have

lim inf
𝑛→∞

1
𝑛

logP(𝐿𝑛 ∈ 𝐵𝑎 (𝜌)𝑐 ) ≥ −𝐽 (𝑎) (1.20)

and

lim sup
𝑛→∞

1
𝑛

logP(𝐿𝑛 ∈ 𝐵𝑎 (𝜌)𝑐 ) ≤ −𝐽 (𝑎−). (1.21)

Proof Sketch. We will do this via truncation/approximation. Let 𝜋𝑁 : 𝑠 ↦→ 𝑠 ∧ 𝑁 and write 𝜋𝑁𝜈 = 𝜈 ◦ 𝜋𝑁 . We again
split into upper and lower bounds. Observing that we have uniform control over the total variation after truncation

0 ≤ 𝑑 (𝜈, 𝜌) − 𝑑 (𝜋𝑁𝜈, 𝜋𝑁 𝜌) ≤
1
2

∞∑︁
𝑠=𝑁

𝜌𝑠 + 𝜈𝑠 ∧ 𝜌𝑠 ≤
∞∑︁
𝑠=𝑁

𝜌𝑠 , (1.22)

we can write the inequality

P(𝑑 (𝜋𝑁𝐿𝑛, 𝜋𝑁 𝜌) > 𝑎) ≤ P(𝑑 (𝐿𝑛, 𝜌) > 𝑎) ≤ P(𝑑 (𝜋𝑁𝐿𝑛, 𝜋𝑁 𝜌) > 𝑎 − 𝛿) (1.23)

for some 𝛿 > 0. Apply Sanov’s theorem for the finite alphabet case, we get

− inf
𝜈∈Γ (N) :𝑑 (𝜋𝑁 𝜈,𝜋𝑁 𝜌 )>𝑎

R(𝜋𝑁𝜈 ∥𝜋𝑁 𝜌) ≤ lim inf
1
𝑛

logP(𝑑 (𝐿𝑛, 𝜌) > 𝑎)

≤ lim sup
1
𝑛

logP(𝑑 (𝐿𝑛, 𝜌) > 𝑎) ≤ − inf
𝜈∈Γ (N) :𝑑 (𝜋𝑁 𝜈,𝜋𝑁 𝜌 )>𝑎−𝛿

R(𝜋𝑁𝜈 ∥𝜋𝑁 𝜌). (1.24)

□

1.2 Empirical measures of Markov Chains

1.3 Application of Sanov’s theorem: interacting diffusions We consider 𝑁 particles diffusing down an
energy landscape. Each particle 𝑋 𝑖 will be associate with an (random) medium/environment 𝜔𝑖 . The landscape is
defined by the Hamiltonian

𝐻𝑁 (𝑥,𝜔) =
1

2𝑁

𝑁∑︁
𝑖, 𝑗=1

𝑓 (𝑥 𝑗 − 𝑥𝑖 ;𝜔𝑖 , 𝜔 𝑗 ) +
𝑁∑︁
𝑖=1

𝑔(𝑥𝑖 ;𝜔𝑖 ) (1.25)

where 𝑓 is the pairwise potential and𝑔 is the internal field. Moreover, we will assume boundedness on 𝑓 and𝑔 as well
as their first and second derivatives. More importantly, we will need 𝑓 to act symmetrically in the first argument,
i.e., 𝑓 (𝑥 𝑗 − 𝑥𝑖 ;𝜔𝑖 , 𝜔 𝑗 ) = 𝑓 (𝑥𝑖 − 𝑥 𝑗 ;𝜔𝑖 , 𝜔 𝑗 ) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . Then, the particle “diffuse down the landscape” in the
sense of being the solution to the SDE {

𝑑𝑋 𝑖𝑡 = − 𝜕𝐻𝑁

𝜕𝑥𝑖
(𝑋𝑡 ;𝜔)𝑑𝑡 + 𝑑𝑊 𝑖

𝑡 ,

𝑋0 ∼ 𝜆⊗𝑁 , 𝜔 ∼ 𝜇⊗𝑁
(1.26)

where𝑊 = (𝑊 𝑖 )𝑖≥0 are independent Brownian motions.
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Example 1.9 (Kuromoto). The Kuromoto model is a common model of a large system of coupled oscillators. The
particle will lie on the unit circle, i.e., 𝑋 𝑖𝑡 ∈ [0, 2𝜋] with periodic boundaries. For some (deterministic) coupling
strength 𝐾 , we can write the Hamiltonian as

𝐻𝑁 (𝑥 ;𝜔) = − 1
𝑁

𝑁∑︁
𝑖, 𝑗=1

𝐾 cos(𝑥 𝑗 − 𝑥𝑖 ) −
𝑁∑︁
𝑖=1

𝜔𝑖𝑥 . (1.27)

Without the coupling term, we see that each particle rotate at their own (random) inherit frequency 𝜔 . At the same
time, the coupling term coerces the particles to synchronize with each other. We can show, using the tools to be
developed, that in the case that 𝜇 is symmetric, there is a phase transition as 𝐾 reaches a critical point 𝐾𝑐—if 𝐾 < 𝐾𝑐 ,
all particles are incoherent (position independently and uniformly distributed), and if 𝐾 > 𝐾𝑐 , a positive fraction of
oscillators synchronize to the same frequency.

We are interested in establishing LDP in the large system-size limit for the empirical measure of the path and
media jointly, i.e.,

𝐿𝑁 =
1
𝑁

𝑁∑︁
𝑖=1

𝛿 (𝑋 𝑖
0:𝑇 ,𝜔𝑖 ) ∈ P(𝐶 [0 : 𝑇 ] × R) (1.28)

for some 𝑇 < ∞.

Remark 1.10. We can consider different ensembles. The quenched model refers to fixing the media parameter, and
observe that law, P𝜔

𝑁
, of (𝑋 𝑖0:𝑇 )𝑖≥0. On the other hand, when we take the media into account, that is, the law of

((𝑋 𝑖0:𝑇 , 𝜔𝑖 ))𝑖≥0, we call it the annealed model.

Remark 1.11. The quenched model has a well-known invariant distribution with density

𝑥 ↦→ 1
𝑍
𝑒−𝐻𝑁 (𝑥 ;𝜔 ) (1.29)

where 𝑍 is the normalizing constant; this is the Gibbs distribution. Under the inner-product space induced by this
invariant distribution, the process is reversible.

We will present the LDP two ways: the first is an easy consequence of the theorems we’ve established before,
namely, Sanov’s theorem and the tilted LDP. However, the rate function is not interpretable in this form, so we resort
to the second derivation and embrace the idea of a typical particle. We start with the not-so-handsome-looking one.

Lemma 1.12. Let P𝜔
𝑁
be the annealed law andW𝑁 be the law of the Brownian motion driving the system, i.e., the system

if 𝐻 ≡ 0. Then, there exists a functional 𝐹 : P(𝐶 [0 : 𝑇 ] × R) → R such that the Radon-Nikodym derivative can be
written as

𝑑P𝜔
𝑁

𝑑W𝑁

(𝑋0:𝑇 ) = 𝑒𝑁𝐹 (𝐿𝑁 ) (1.30)

where the empirical measure is on the trajectories of each particle of the sample path 𝑋0:𝑇 with corresponding media 𝜔 .

Proof. Via Girsanov, the Radon-Nikodym derivative can be written down as

𝑑P𝜔
𝑁

𝑑W𝑁

(𝑋0:𝑇 ) = exp

(
−

𝑁∑︁
𝑖=1

∫ 𝑇

0

𝜕𝐻𝑁

𝜕𝑥𝑖
(𝑋𝑡 ;𝜔)𝑑𝑋 𝑖𝑡 −

1
2

𝑁∑︁
𝑖=1

∫ 𝑇

0

(
𝜕𝐻𝑁

𝜕𝑥𝑖
(𝑋𝑡 ;𝜔)

)2
𝑑𝑡

)
. (1.31)

Recall that, underW𝑁 , 𝑋 𝑖 ’s are independent Brownian motions. Therefore, by Ito, we can rewrite the second term
as

𝑁∑︁
𝑖=1

∫ 𝑇

0

𝜕𝐻𝑁

𝜕𝑥𝑖
(𝑋𝑡 ;𝜔)𝑑𝑋 𝑖𝑡 = 𝐻 (𝑋𝑇 ) − 𝐻 (𝑋0) −

1
2

𝑁∑︁
𝑖=1

∫ 𝑇

0

𝜕2𝐻𝑁

𝜕𝑥2
𝑖

(𝑋𝑡 ;𝜔)𝑑𝑡 . (1.32)
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Using the symmetry of 𝑓 , that is,

𝜕𝐻𝑁

𝜕𝑥𝑖
(𝑋𝑡 ;𝜔) =

𝜕

𝜕𝑥𝑖

(
1

2𝑁

𝑁∑︁
𝑗=1

𝑓 (𝑥𝑖 − 𝑥 𝑗 ) + 𝑓 (𝑥 𝑗 − 𝑥𝑖 )
)
=

1
𝑁

𝑁∑︁
𝑗=1

𝑓 ′ (𝑥𝑖 − 𝑥 𝑗 ), (1.33)

the exponent of the Radon-Nikodym derivative looks like

− (𝐻 (𝑋𝑇 ) − 𝐻 (𝑋0)) +
1
2

𝑁∑︁
𝑖=1

∫ 𝑇

0

𝜕2𝐻𝑁

𝜕𝑥2
𝑖

(𝑋𝑡 ;𝜔)𝑑𝑡 −
1
2

𝑁∑︁
𝑖=1

∫ 𝑇

0

(
𝜕𝐻𝑁

𝜕𝑥𝑖
(𝑋𝑡 ;𝜔)

)2
𝑑𝑡

= −
(

1
2𝑁

𝑁∑︁
𝑖, 𝑗=1

𝑓 (𝑋 𝑖𝑇 − 𝑋 𝑗

𝑇
;𝜔𝑖 , 𝜔 𝑗 ) − 𝑓 (𝑋 𝑖0 − 𝑋

𝑗

0 ;𝜔𝑖 , 𝜔 𝑗 ) +
𝑁∑︁
𝑖=1

𝑔(𝑋 𝑖𝑇 ;𝜔𝑖 ) − 𝑔(𝑋 𝑖0;𝜔𝑖 )
)

+ 1
2

𝑁∑︁
𝑖=1

∫ 𝑇

0

1
𝑁

𝑁∑︁
𝑗=1

𝑓 ′′ (𝑋 𝑖𝑡 − 𝑋
𝑗
𝑡 ;𝜔𝑖 , 𝜔 𝑗 ) − 𝑔′′ (𝑋 𝑖𝑡 ;𝜔𝑖 )𝑑𝑡

− 1
2

𝑁∑︁
𝑖=1

∫ 𝑇

0

(
1
𝑁

𝑁∑︁
𝑗=1

𝑓 ′ (𝑋 𝑖𝑡 − 𝑋
𝑗
𝑡 ;𝜔𝑖 , 𝜔 𝑗 ) − 𝑔′ (𝑋 𝑖𝑡 ;𝜔𝑖 )

)2

𝑑𝑡 . (1.34)

Now, thinking of each empirical average as integrating over empirical measures and adding a factor of 𝑁 in front of
each term yields 𝑑P𝜔

𝑁
/𝑑W𝑁 = 𝑒𝑁𝐹 (𝐿𝑁 ) . □

Theorem 1.13. The sequence of empirical measures (𝐿𝑁 )𝑁 ⊂ P(𝐶 [0 : 𝑇 ] × R) satisfies an LDP with rate 𝑁 and rate
function

𝐼 (𝑄) = R(𝑄 ∥𝑊 × 𝜇) − 𝐹 (𝑄) (1.35)

where𝑊 is the Wiener measure.

Proof. First, we know that, under 𝜇⊗𝑁 (𝑑𝜔)W𝑁 (𝑑𝑥0:𝑇 ), we can apply Sanov’s theorem and deduce that (𝐿𝑁 ) satisfies
an LDPwith rate𝑁 and rate functionR(𝑄 ∥𝑊 ×𝜇). Now, we can tiltW𝑁 by 𝑒𝑁𝐹 (𝐿𝑁 ) to get the quenched law P𝜔

𝑁
. Note

that 𝐹 is continuous and bounded (using the boundedness of 𝑓 and 𝑔 and their derivatives) in the topology of weak
convergence of measures. Thus, using the tilted LDP, we get that, under the annealed model 𝜇⊗𝑁 (𝑑𝜔)P𝜔

𝑁
(𝑑𝑥0:𝑇 ),

(𝐿𝑁 ) satisfies an LDP with rate 𝑁 and rate function R(𝑄 ∥𝑊 × 𝜇) − 𝐹 (𝑄). □

Looking at the proof, we see that we get the LDP practically for free—particularly from boundedness assumptions
as well as an interaction kernel that scales like 1/𝑁—using two of the previous theorems. The downside is also
clear: it is difficult to interpret the rate function, especially the functional 𝐹 . As an attempt to simplify this, let’s
take a philosophical detour. From the large deviation principle, we know that there is a deterministic measure on
𝐶 [0 : 𝑇 ] ×R—the measure for which the rate function is zero—that the empirical measure converge to. Such measure
will describe the average media parameter, as well as the conditional law of an average/typical particle given the
media. We will proceed to indulge in the idea of the typical particle and derive properties of the system in this
mean-field limit.

Suppose 𝑄 ∈ P(𝐶 [0 : 𝑇 ] × R) is the law of the typical particle and, additionally, we pick our favorite out of the
litter. Suppose that our particle is wandering in media 𝜔 . Then, our particle should follow the SDE

𝑑𝑋𝑡 = 𝛽
𝜔,𝜋𝑡𝑄 (𝑋𝑡 )𝑑𝑡 + 𝑑𝑊𝑡 , 𝑋0 ∼ 𝜆 (1.36)

where 𝜋𝑡 is the projection onto the time-𝑡 marginal, i.e., 𝜋𝑡𝑄 ∈ P(R×R) and 𝛽𝜔,𝑞 diffuses down the energy landscape
with respect to the mean-field effect

𝛽𝜔,𝑞 (𝑥) = −
∫

𝑓 ′ (𝑦 − 𝑥 ;𝜔, 𝜋) − 𝑔′ (𝑥)𝑞(𝑑𝑦,𝑑𝜋). (1.37)

We will denote that quenched law of the unique strong solution to this SDE by P𝜔,𝑄 . Of course, as much as we’d like
our child to be the best, our favorite particle of the litter is nothing but another typical particle, so the law of 𝑋 has
to be the quenched law derived from 𝑄 . However, this is not a priori obvious and the existence of such process will
be established through the LDP below.
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Theorem 1.14. For any 𝑄 ∈ P(𝐶 [0 : 𝑇 ] × R) and let P𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔) = P𝜔,𝑄 (𝑑𝑥0:𝑇 )𝜇 (𝑑𝜔). Then, (𝐿𝑁 )𝑁 satisfies an
LDP with rate 𝑛 and rate function

𝐼 (𝑄) = R(𝑄 ∥P𝑄 ). (1.38)

Proof. This theorem relies on the previous less interpretable LDP. Notice that by the chain rule of relative entropy,

R(𝑄 ∥P𝑄 ) =
∫

log
𝑑𝑄

𝑑P𝜔,𝑄𝜇
𝑑𝑄 =

∫
log

𝑑𝑄

𝑑𝑊 × 𝜇𝑑𝑄 −
∫

log
𝑑P𝜔,𝑄

𝑑𝑊
𝑑𝑄. (1.39)

So, we have to verify that 𝐹 (𝑄) =
∫

log 𝑑P𝜔,𝑄

𝑑𝑊
𝑑𝑄 . First, by Girsanov, we find the (log of) the Radon-Nikodym

derivative to be

log
𝑑P𝜔,𝑄

𝑑𝑊
(𝑥0:𝑇 ) =

∫ 𝑇

0
𝛽𝜔,𝜋𝑡𝑄 (𝑥𝑡 )𝑑𝑥𝑡 −

1
2

∫ 𝑇

0

(
𝛽𝜔,𝜋𝑡𝑄 (𝑥𝑡 )

)2
𝑑𝑡 . (1.40)

We start with the first term. Recall that 𝑓 is symmetric and 𝑓 ′ is odd, so∫ ∫ ∫ 𝑇

0
𝑓 ′ (𝑦𝑡 − 𝑥𝑡 ;𝜔, 𝜋)𝑑𝑥𝑡𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔)𝑄 (𝑑𝑦0:𝑇 , 𝑑𝜋)

=
1
2

∫ ∫ ∫ 𝑇

0
𝑓 ′ (𝑦𝑡 − 𝑥𝑡 ;𝜔, 𝜋)𝑑 (𝑥𝑡 − 𝑦𝑡 )𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔)𝑄 (𝑑𝑦0:𝑇 , 𝑑𝜋) (1.41)

=
1
2

∫ ∫ (∫ 𝑇

0
𝑓 ′′ (𝑦𝑡 − 𝑥𝑦 ;𝜔, 𝜋)𝑑𝑡 − 𝑓 (𝑦0 − 𝑥0;𝜔, 𝜋) + 𝑓 (𝑦𝑇 − 𝑥𝑇 )

)
𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔)𝑄 (𝑑𝑦0:𝑇 , 𝑑𝜋) (1.42)

where the last equality is by Ito’s formula for the semi-martingale 𝑥𝑡 − 𝑦𝑡 , i.e.,

𝑓 (𝑦𝑇 − 𝑥𝑇 ) − 𝑓 (𝑦0 − 𝑥0) =
∫ 𝑇

0
𝑓 ′ (𝑦𝑡 − 𝑥𝑡 )𝑑 (𝑥𝑡 − 𝑦𝑡 ) +

∫ 𝑇

0
𝑓 ′′ (𝑦𝑡 − 𝑥𝑡 )𝑑𝑡 . (1.43)

Since the integrands are bounded, using Fubini and repeating similar steps as above for 𝑔, we get∫ ∫ 𝑇

0
𝛽𝜔,𝜋𝑡𝑄 (𝑥𝑡 )𝑑𝑥𝑡𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔)

= −
∫ ∫ 𝑇

0

(∫
𝑓 ′ (𝑦𝑡 − 𝑥𝑡 ;𝜔, 𝜋)𝑄 (𝑑𝑦0:𝑇 , 𝑑𝜋) + 𝑔′ (𝑥𝑡 ;𝜔)

)
𝑑𝑥𝑡𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔) (1.44)

=
−1
2

∫ ∫ (∫ 𝑇

0
𝑓 ′′ (𝑦𝑡 − 𝑥𝑦 ;𝜔, 𝜋)𝑑𝑡 − 𝑓 (𝑦0 − 𝑥0;𝜔, 𝜋) + 𝑓 (𝑦𝑇 − 𝑥𝑇 )

)
𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔)𝑄 (𝑑𝑦0:𝑇 , 𝑑𝜋)

−
∫ ∫ (

−1
2

∫ 𝑇

0
𝑔′′ (𝑥𝑡 ;𝜔)𝑑𝑡 + 𝑔(𝑥𝑇 ;𝜔) − 𝑔(𝑥0;𝜔)

)
𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔) (1.45)

The second term is a bit less work. Simply expanding gives

− 1
2

∫ ∫ 𝑇

0

(
𝛽𝜔,𝜋𝑡𝑄 (𝑥𝑡 )

)2
𝑑𝑡𝑄 (𝑥0:𝑇 , 𝑑𝜔)

= −1
2

∫ 𝑇

0

(∫
𝑓 ′ (𝑥𝑡 − 𝑦𝑡 ;𝜔, 𝜋)𝜋𝑡𝑄 (𝑑𝑦𝑡 , 𝑑𝜋) − 𝑔′ (𝑥𝑡 ;𝜔)

)2
𝑑𝑡 (1.46)

= −1
2

∫ ∫ 𝑇

0

(∫
𝑓 ′ (𝑥𝑡 − 𝑦𝑡 ;𝜔, 𝜋)𝑄 (𝑑𝑦0:𝑡 , 𝑑𝜋) − 𝑔′ (𝑥𝑡 ;𝜔)

)2
𝑑𝑡𝑄 (𝑥0:𝑇 , 𝑑𝜔). (1.47)

Pattern match the above to equation (1.34) gives the result. □

It turns out, after gruesome calculations, that our “typical particle” way of thinking is fruitful! As rate functions
always have a zero, we know that there must be a measure𝑄 = 𝑃𝑄 that describes a typical particle, and the evolution
by the average drift 𝛽𝜔,𝑄 must yield a law that agrees with 𝑄 (averaged over the media variable 𝜔). We call this the
McKean-Vlasov diffusion and we remark a few of its properties below.
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Theorem 1.15 (McKean-Vlasov). Let 𝑄 ∈ P(𝐶 [0 : 𝑇 ] × R) be the fixed point 𝑄 = 𝑃𝑄 , disintegrate 𝑄 (𝑑𝑥0:𝑇 , 𝑑𝜔) =

𝜈 (𝑑𝜔)𝑄𝜔 (𝑑𝑥0:𝑇 ). Assume that 𝑋0 ∼ 𝜆 has a density with respect to Lebesgue measure and has finite 𝑝-th moment for
some 𝑝 > 1. Then, the following holds:

1. 𝜈 = 𝜇,

2. 𝑄𝜔 is the law of the time-inhomogenious Markov process

𝑑𝑋𝑡 = 𝛽
𝜔,𝜋𝑡𝑄 (𝑋𝑡 )𝑑𝑡 + 𝑑𝑊𝑡 ,

3. let 𝑞𝜔𝑡 = 𝜋𝑡𝑄
𝜔 be the time-marginal of the process, then it is the weak solution of the McKean-Vlasov equation{

𝜕𝑡𝑞
𝜔
𝑡 = L𝜔𝑞𝜔𝑡 ,

𝑞𝜔0 = 𝜆
(1.48)

where

L𝜔𝑞𝜔𝑡 = − 𝜕

𝜕𝑥
(𝛽𝜔,𝑞𝑡𝑞𝜔𝑡 ) +

1
2
𝜕2

𝜕𝑥2𝑞
𝜔
𝑡 , (1.49)

4. the diffusion process has the generator

𝐿𝜔𝑡 = 𝛽𝜔,𝑞𝑡
𝜕

𝜕𝑥
+ 1

2
𝜕2

𝜕𝑥2 . (1.50)

Notice that, since 𝛽𝜔,𝑞 depends on the law of the process, this diffusion is heavily nonlinear. But on the upside,
we’ve reduced the dimensionality of the system from 𝑁 (in the limit as 𝑁 → ∞) to 1. However, finding 𝑄 is usually
difficult.

We will conclude the section filling in the analysis of the Kuromoto model. Let 𝑞𝜔 be the density of the typical
particle, which must satisfy the boundary condition 𝑞𝜔𝑡 (0) = 𝑞𝜔𝑡 (2𝜋). We will define the order parameter

𝑟𝑡𝑒
𝑖𝜓𝑡 =

∫
R

∫ 2𝜋

0
𝑒𝑖𝑥𝑞𝜔𝑡 (𝑥)𝑑𝑥𝜇 (𝑑𝜔) (1.51)

where we call 𝑟𝑡 the phase coherence and 𝜓𝑡 the average phase. We can express the drift of the McKean-Vlasov
diffusion in terms of the order paramters:

𝛽
𝜔,𝑞𝑡
𝑡 =

∫
R

∫ 2𝜋

0
(𝐾 sin(𝑦 − 𝑥) + 𝜔) 𝑞𝜋 (𝑑𝑦)𝜇 (𝑑𝜋) = 𝐾𝑟𝑡 sin(𝜓𝑡 − 𝑥) + 𝜔. (1.52)

For simplicity, let’s assume 𝜇 is symmetric so that the imaginary part vanishes and𝜓𝑡 = 0. Moreover, we will try to
find a stationary solution. From the McKean-Vlasov equation and taking the time evolution to be zero, we will find
that 𝑞𝜔𝑡 := 𝑞 has to satisfy the second-order ODE

𝑞′′ − (𝐾𝑟 sin𝑥 + 𝜔)𝑞′ + (𝐾𝑟 cos𝑥)𝑞 = 0. (1.53)

First, when 𝑟 = 0, we can easily solve the ODE

𝑞′′ − 𝜔𝑞′ = 0

with the boundary condition 𝑞(0) = 𝑞(2𝜋) yields the solution that 𝑞 is a constant. This corresponds to the incoherent
phase where all oscillators are uniformly distributed and independent of each other.

Life becomes much harder when 𝑟 > 0. First, we would have to solve the second-order ODE (up to intergrating
factors), so

𝑞𝜔 (𝑥) = 1
𝑍𝜔,𝑟

𝐴𝜔,𝑟 (𝑥) (1.54)
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where

𝐴𝜔,𝑟 (𝑥) = 𝐵𝜔,𝑟 (𝑥)
(
𝑒4𝜋𝜔

∫ 2𝜋

0

𝑑𝑦

𝐵𝜔,𝑟
+ (1 − 𝑒4𝜋𝜔

∫ 𝑥

0

𝑑𝑦

𝐵𝜔,𝑟 (𝑦)

)
, (1.55)

𝐵𝜔,𝑟 (𝑥) = exp(2𝐾𝑟 cos𝑥 + 2𝜔𝑥). (1.56)

If we look back at the order parameters, we can plug our 𝑟 -dependent solutions back in and obtain a consistency
relation

𝑟 = Φ𝜇 (𝑟 ) =
∫
R

1
𝑍𝜔,𝑟

(∫ 2𝜋

0
𝐴𝜔,𝑟 (𝑥) cos𝑥𝑑𝑥

)
𝜇 (𝑑𝜔). (1.57)

The existence of a solution relies on whether the consistency relation is satisfied. If we study the map 𝑟 ↦→ Φ(𝑟 ), we
can observe that

1. the map is continuous with Φ𝜇 (0) = 0 and Φ𝜇 (𝑟 ) → 1 as 𝑟 → ∞,

2. if 𝜇 is unimodal, Φ′
𝜇 (0) = 𝐾/𝐾𝑐 , Φ′′

𝜇 (0) = 0, and Φ′′′
𝜇 (0) < 0 where

𝐾−1
𝑐 =

∫
R

1
1 + 4𝜔2 𝜇 (𝑑𝜔). (1.58)

Therefore, for 𝐾/𝐾𝑐 > 1, or 𝐾 > 𝐾𝑐 , we know that Φ𝜇 (𝑟 ) > 𝑟 for small enough 𝑟 and Φ𝜇 (𝑟 ) < 𝑟 for 𝑟 > 1. Therefore,
by continuity, there must exist a fixed point 𝑟 = Φ𝜇 (𝑟 ) and a synchronized solution exists (though we know nothing
about uniqueness). When 𝐾/𝐾𝑐 < 1, it is unclear as to whether a solution exist as we don’t have exact control over
the concavity.

2 General Theory of Large Deviation

2.1 Rate functions and the Laplace principle

2.2 Gärtner-Ellis theorem So far, concrete examples of the large deviation principle has been based on strong
model assumptions, e.g., i.i.d. samples or Markov chain. Here, we hope to generalize the previous examples which
will be done via careful convex analysis. Let 𝑍𝑛 : (Ω, F , P) → (R𝑑 ,B(R𝑑 )) be a sequence of random variables and
let 𝜑𝑛 denote its moment generating functions.

Assumption 2.1. Below is the running assumption throughout the subsection:

1. lim𝑛→∞
1
𝑛

log𝜑𝑛 (𝑛𝑡) = Λ(𝑡) exists, and

2. 0 ∈ int𝐷Λ.

We’re interested in establishing large deviation for the family of measures 𝑃𝑛 (·) = P(𝑍𝑛 ∈ ·) through the convex
dual Λ∗ (𝑥) = sup𝑡 ∈R{⟨𝑡, 𝑥⟩ − Λ(𝑡)}. Of course, we must first make sure that Λ∗ makes sense as it is not a priori
obvious with Λ being a limit.

Lemma 2.2. Under Assumption 2.1, Λ is convex and bounded below and Λ∗ is a good rate function and convex.

Proof. Since 0 remains in the domain of Λ and log𝜑𝑛 are convex functions, Λ is convex and bounded from below.
Immediately, this implies that the convex dual Λ∗ is also convex and lower semi-continuous. Lastly, to show that Λ∗

has compact level sets, it suffices to show that the level sets are bounded. Since 0 ∈ int𝐷Λ, there is a 𝛿 > 0 such that
𝐵𝛿 (0) ⊂ int𝐷Λ. So,

Λ∗ (𝑥) ≥ sup
𝑡 ∈𝐵𝛿 (0)

⟨𝑡, 𝑥⟩ − Λ(𝑡) ≥ 𝛿 |𝑥 | − sup
𝑡 ∈𝐵𝛿 (0)

Λ(𝑡). (2.1)

Since the latter function has bounded level sets, Λ∗ must also have bounded level sets. Combined with lower semi-
continuity of Λ∗, we get that Λ∗ is a good rate function. □
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Remark 2.3. The assumption that Λ—as the pointwise limit of functions—exists can be thought of a requirement on
the “strength” of dependence between 𝑍𝑛’s. First, if (𝑋𝑛)𝑛≥0 be i.i.d. and 𝑍𝑛 = 1

𝑛

∑𝑛
𝑘=1𝑋𝑘 , then

1
𝑛

log𝜑𝑛 (𝑛𝑡) =
1
𝑛

log
(
E 𝑒𝑡𝑋1

)𝑛
= E 𝑒𝑡𝑋1 (2.2)

as we have with Cramér. In fact, we can let the samples be a bit more dependent: consider (𝑋𝑛)𝑛≥0 as a (strong-sense)
stationary, mean-zero Gaussian process whose correlation decays fast enough

∞∑︁
𝑘=1

|𝐶𝑘 | :=
∞∑︁
𝑘=1

|E𝑋1𝑋𝑘 | < ∞. (2.3)

Again, let 𝑍𝑛 be the sample mean. Then, we can calculate

1
𝑛

log𝜑𝑛 (𝑛𝑡) =
1
𝑛

log 𝑒
𝑡2
2

∑𝑛
𝑘=1𝐶𝑘 (𝑛−|𝑘 | ) =

𝑡2

2

𝑛∑︁
𝑘=1

𝐶𝑘

(
1 − |𝑘 |

𝑛

)
(2.4)

which has a well-defined limit. However, this will collapse if we go too extreme: let𝑌 be non-degenerate and𝑋𝑛 ≡ 𝑌
for all 𝑛. Then,

1
𝑛

log𝜑𝑛 (𝑛𝑡) =
1
𝑛

logE 𝑒𝑛𝑡𝑌 → ∞ (2.5)

as 𝑛 → ∞ since the log-moment generating function grows super-linearly.

As hinted before, the theorem relies on a fair chunck of convex analysis. To obtain a proper lower bound later,
we need to restrict our attention to areas where the probability escapes super-linearly (in log scale). We formalize
this below.

Definition 2.4. A point 𝑥 ∈ R𝑑 is exposed for Λ∗ if there is a 𝑡 ∈ R𝑑 such that

Λ∗ (𝑦) − Λ∗ (𝑥) > ⟨𝑦 − 𝑥, 𝑡⟩ (2.6)

for any 𝑦 ≠ 𝑥 . We say that 𝑡 is normal to an exposing hyperplane for 𝑥 .

Now, we’re ready to present the theorem.

Theorem 2.5 (Gärtner-Ellis). Given Assumption 2.1 and let 𝐸 be the set of exposed points of Λ∗ belonging to int𝐷Λ, the
sequence of (𝑃𝑛) satisfies a LDP with rate 𝑛 and rate function Λ∗ on the exposed points, i.e.,

1. lim sup𝑛→∞
1
𝑛

log 𝑃𝑛 (𝐶) ≤ − inf𝑥∈𝐶 Λ∗ (𝑥) for closed 𝐶 ⊂ R𝑑 , and

2. lim inf𝑛→∞
1
𝑛

log 𝑃𝑛 (𝑂) ≤ − inf𝑥∈𝑂∩𝐸 Λ∗ (𝑥) for open 𝑂 ⊂ R𝑑 .

Proof. The proof will proceed like that of Cramér’s theorem—upper bound is established via an exponential Cheby-
shev inequality, and the lower bound via exponential tilting—though requiring more intricate analysis throughout.

Upper bound for compact sets We first prove the statement for compact sets. Pick your favorite 𝛿 > 0 and
shrink and cleverly truncate Λ∗ be defining

Λ∗
𝛿
= min

{
Λ∗ − 𝛿, 1

𝛿

}
. (2.7)

Now, for every 𝑥 ∈ R𝑑 , we can pick a 𝛿-optimizer 𝑡𝑥 ∈ R𝑑 such that

⟨𝑥, 𝑡𝑥 ⟩ − Λ(𝑡𝑥 ) ≥ Λ∗ (𝑥) − 𝛿 ≥ Λ∗
𝛿
(𝑥) (2.8)

while finding a neighborhood 𝐴𝑥 such that

inf
𝑦∈𝐴𝑥

⟨𝑦 − 𝑥, 𝑡𝑥 ⟩ ≥ −𝛿. (2.9)
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By Chebyshev while exponentiating by a factor of 𝑛, we get that

𝑃𝑛 (𝐴𝑥 ) ≤ P(⟨𝑍𝑛 − 𝑥, 𝑡𝑥 ⟩ ≥ −𝛿) ≤ 𝑒𝛿𝑛𝜑𝑛 (𝑛𝑡𝑥 )𝑒−𝑛⟨𝑥,𝑡𝑥 ⟩ . (2.10)

Now, take a compact set 𝐾 and cover it by
⋃
𝑥∈𝐾 𝐴𝑥 ⊃ 𝐾 . By compactness, we only need to finitely many 𝐴𝑥 ’s⋃𝑁

𝑖=1𝐴𝑥𝑖 . So, we can estimate

1
𝑛

log 𝑃𝑛 (𝐾) ≤
1
𝑛

log
(
𝑁 max
𝑖=1,...,𝑁

𝑃𝑛 (𝐴𝑥𝑖 )
)
≤ 1
𝑛

log𝑁 + 𝛿 − min
𝑖=1,...,𝑁

{
⟨𝑥𝑖 , 𝑡𝑖⟩ −

1
𝑛

log𝜑𝑛 (𝑛𝑡𝑥𝑖 )
}
. (2.11)

Take 𝑛 → ∞ gives

lim sup
𝑛→∞

1
𝑛

log 𝑃𝑛 (𝐾) ≤ 𝛿 − min
𝑖=1,...,𝑁

{
⟨𝑥𝑖 , 𝑡𝑖⟩ − Λ(𝑡𝑥𝑖 )

}
≤ 𝛿 − min

𝑖=1,...,𝑁
Λ∗
𝛿
(𝑡𝑥𝑖 ) ≤ 𝛿 − inf

𝑥∈𝐾
Λ∗
𝛿
(𝑥) . (2.12)

Taking 𝛿 ↓ 0 completes the upper bound for compact sets.

Upper bound for general closed sets To start by showing the sequence (𝑃𝑛) is exponentially tight. Consider a
sequence of growing cubes [−𝑁, 𝑁 ]𝑑 ⊂ R𝑑 and let (𝑒𝑖 )𝑑𝑖=1 denote the canonical basis of R

𝑑 . Since 0 ∈ int𝐷Λ, there
is 𝛿 > 0 such that ±𝛿𝑒𝑖 ∈ int𝐷Λ for all 𝑖 . From Chebyshev while exponentiating by 𝑛𝛿 , we get the following pair of
inequality:

P(𝑍𝑛,𝑖 ≥ 𝑁 ) ≤ 𝑒−𝑛𝛿𝑁𝜑𝑛 (𝑛𝛿𝑒𝑖 ), P(𝑍𝑛,𝑖 ≤ −𝑁 ) ≤ 𝑒−𝑛𝛿𝑁𝜑𝑛 (−𝑛𝛿𝑒𝑖 ). (2.13)

By the same type of estimate as before, we get

lim sup
𝑛→∞

1
𝑛

logP(𝑍𝑛 ∈ R𝑑 \ [−𝑁, 𝑁 ]𝑑 ) ≤ −𝛿𝑁 + max
𝑖=1,...,𝑑

max {Λ(𝛿𝑒𝑖 ),Λ(−𝛿𝑒𝑖 )} . (2.14)

Taking 𝑁 → ∞, the above drops to −∞ and exponential tightness is established.
Now, take any closed 𝐶 ⊂ R𝑑 , notice that 𝐶 ∩ [−𝑁, 𝑁 ]𝑑 is compact and

inf
𝑥∈𝐶

Λ∗ (𝑥) = lim
𝑁→∞

inf
𝑥∈𝐶∩[−𝑁,𝑁 ]𝑑

Λ∗ (𝑥). (2.15)

So, we decompose 𝐶 into inside and outside the cube and use the results established for compact set to write

lim sup
𝑛→∞

1
𝑛

log 𝑃𝑛 (𝐶) ≤ lim sup
𝑛→∞

1
𝑛

(
log 𝑃𝑛 (𝐶 ∩ [−𝑁, 𝑁 ]𝑑 ) + 𝑃𝑛 (R𝑑 \ [−𝑁, 𝑁 ]𝑑 )

)
(2.16)

≤ max
{
− inf
𝑥∈𝐶∩[−𝑁,𝑁 ]𝑑

Λ∗ (𝑥), lim sup
𝑛→∞

1
𝑛

log 𝑃𝑛 (R𝑑 \ [−𝑁, 𝑁 ]𝑑 )
}

(2.17)

→ − inf
𝑥∈𝐶

Λ∗ (𝑥) (2.18)

as 𝑁 → ∞ since the second term goes to −∞ by exponential tightness.

Lower bound It is enough to show that for any ball 𝐵𝜖 (𝑥)

lim
𝜖↓0

lim inf
𝑛→∞

1
𝑛

log 𝑃𝑛 (𝐵𝜖 (𝑥)) ≥ −Λ∗ (𝑥) (2.19)

as we can always put little balls inside open sets and optimize over the placement of the ball later. We proceed by
exponential tilting.

Fix any 𝑥 ∈ 𝐸 and let 𝜏 ∈ int𝐷Λ be an exposing hyperplane for 𝑥 . So, we introduce a new measure 𝑃𝑛 with
Radon-Nikodymn derivative

𝑑𝑃𝑛

𝑑𝑃𝑛
(𝑦) = 1

𝜑𝑛 (𝑛𝜏)
𝑒𝑛⟨𝑦,𝜏 ⟩ . (2.20)
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Then, doing a change in measure gives:

1
𝑛

log 𝑃𝑛 (𝐵𝜖 (𝑥)) =
1
𝑛

log𝜑𝑛 (𝑛𝜏) +
1
𝑛

log
∫
𝐵𝜖 (𝑥 )

𝑒−𝑛⟨𝑦,𝜏 ⟩𝑃𝑛 (𝑑𝑦) (2.21)

≥ 1
𝑛

log𝜑𝑛 (𝑛𝜏) − ⟨𝑥, 𝜏⟩ − 𝜖 |𝜏 | + 1
𝑛

log 𝑃𝑛 (𝐵𝜖 (𝑥)) (2.22)

Notice that, taking the limit, the first three terms combined gives the lower bound desired. So, we need to show that
the last term goes to zero, i.e., the event 𝐵𝜖 (𝑥) is not rare in the tilted measure—or equivalently, R𝑑 \ 𝐵𝜖 (𝑥) is rare.
First, notice that

lim
𝑛→∞

1
𝑛

log𝜑𝑛 (𝑛𝑡) = lim
𝑛→∞

1
𝑛

log
𝜑𝑛 (𝑛(𝑡 + 𝜏))
𝜑𝑛 (𝑛𝜏)

= Λ(𝑡 + 𝜏) − Λ(𝜏), (2.23)

which means that

Λ̂∗ = sup
𝑡

{⟨𝑥, 𝑡⟩ − Λ(𝑡 + 𝜏) + Λ(𝜏)} = sup
𝑡

{⟨𝑥, 𝑡 + 𝜏⟩ − Λ(𝑡 + 𝜏)} − ⟨𝑥, 𝜏⟩ + Λ(𝜏) = Λ∗ (𝑥) − ⟨𝑥, 𝜏⟩ + Λ(𝜏). (2.24)

Since Λ∗ is a good rate function and, from before, we can obtain a large deviation upper bound on the set R𝑑 \𝐵𝜖 (𝑥)
and suppose the infimum of Λ̂∗ is achieved on 𝑥0. However, since 𝑥 is in 𝐸 and 𝜏 is an exposing hyperplane for Λ∗,
we have

Λ̂∗ (𝑥0) = Λ∗ (𝑥0) − ⟨𝑥0, 𝜏⟩ + Λ(𝜏) ≥ Λ∗ (𝑥0) − ⟨𝑥0, 𝜏⟩ − Λ∗ (𝑥) + ⟨𝑥, 𝜏⟩ > 0. (2.25)

Therefore, for any fixed 𝜖 , the rate outside of the ball is less than 0, meaning that the probability outside decays to
zero in the limit. However, since probability must sum up to one, we know that the probability inside must grow to
one in the limit. Sending 𝜖 ↓ 0 completes the proof. □

Remark 2.6. The theorem can be strengthened to a full LDP if we add the constraint that 1) Λ is lower semi-
continuous, 2) Λ is differentiable in int𝐷Λ, and 3) either 𝐷Λ = R𝑑 or 𝜕𝐷Λ is steep. In this case, optimizing Λ∗

over any open set is the same as optimizing over the relative interior of Λ∗, which is a subset of points with an
exposing hyperplane.

Remark 2.7. To see why we need the exposing hyperplane (strong convexity) formalism, take 𝑋𝑛 = 𝑌 ∼ 1
2𝛿{−1} +

1
2𝛿{1} .

3 Large Deviation via Weak Convergence

3.1 Sanov’s theorem revisited

3.2 Small-noise limit of diffusion processes

3.3 Small-noise limit of SDEs driven by jumps

- Finite time horizon 0 < 𝑇 < ∞, (Ω, F , P) probability space, filtration {F𝑡 }𝑡≥0 satisfying usual conditions.

- Define F𝑡 -Poisson process 𝑁 : Ω → 𝐷 [0, 1] such that 𝑁𝑡 is adapted for all 𝑡 ∈ [0,𝑇 ] with independent
increments, and 𝑁𝑡 − 𝑁𝑠 ∼ Poisson(1) for 𝑠 < 𝑡 .

- For 𝜃 > 0, let 𝑁 𝜃 denote a Poisson process with intensity 𝜃 .

- Controlled dynamics:

– Consider a different probability space (Ω̄, F̄ , P̄, {F̄𝑡 }𝑡≥0) with filtration satisfying usual conditions.

– Let A = {𝜑 : [0, 𝑡] × Ω̄ → [0,∞)} be the set of predictable processes with
∫ 𝑡

0 𝜑 (𝑠)𝑑𝑠 < ∞ a.s.
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– The controlled process 𝑁 𝜃𝜑 is a Poisson process with intensity 𝜃𝜑 such that for all bounded 𝑓 : [0,∞) →
[0,∞),

𝑓 (𝑁 𝜃𝜑 (𝑡)) − 𝑓 (0) − 𝜃
∫ 𝑡

0
𝜑 (𝑠)

(
𝑓 (𝑁 𝜃𝜑 (𝑠) + 1) − 𝑓 (𝑁 𝜃𝜑 (𝑠))

)
𝑑𝑠 (3.1)

is a F̄𝑡 -martingale.
– Define the set of restricted controls

𝑆𝑀 =

{
𝜙 : [0, 1] → R+ :

∫ 1

0
ℓ (𝜙 (𝑠))𝑑𝑠 ≤ 𝑀

}
(3.2)

where ℓ (𝑥) = 𝑥 log𝑥 − 𝑥 + 1. Let A𝑏,𝑀 be the set of controls for which 𝜑 ∈ A, 𝜑 (𝜔) ∈ 𝑆𝑀 for all 𝜔 ∈ Ω̄
and there is a 𝐾 < ∞ such that 𝐾−1 ≤ 𝜙 ≤ 𝐾 .

These inequalities for ℓ will turn out to be useful for getting estimates.

Lemma 3.1. For 𝑎, 𝑏 ≥ 0 and 𝑐 ≥ 1, we have

𝑎𝑏 ≤ 𝑒𝑐𝑎 + ℓ (𝑏)
𝑐
, 𝑏 ≤ 𝑒 + ℓ (𝑏). (3.3)

We’re interested in establishing an LDP for the small-noise limit of SDEs driven by Poisson processes:

𝑑𝑋𝑛 (𝑡) = 𝑏 (𝑋𝑛 (𝑡))𝑑𝑡 + 1
𝑛
𝜎 (𝑋𝑛 (𝑡−))𝑑𝑁𝑛 (𝑡), 𝑋𝑛 (0) = 𝑥 . (3.4)

For the existence of ODE limits as well as simplicity, we assume the following.

Assumption 3.2. We assume that 𝑏 and 𝜎 are Lipschitz and bounded, i.e., there exists 𝐶 > 0 such that

|𝑏 (𝑥) − 𝑏 (𝑦) | + |𝜎 (𝑥) − 𝜎 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 |, |𝑏 (𝑥) | + |𝜎 (𝑥) | ≤ 𝐶 (3.5)

for all 𝑥,𝑦 ∈ R.

We want to prove the following.

Theorem 3.3. The collection (𝑋𝑛)𝑛≥0 satisfies an LDP with rate function

𝐼 (𝜓 ) = inf
𝛾 ∈𝑈𝜓

{∫ 1

0
ℓ (𝛾 (𝑡))𝑑𝑡

}
(3.6)

where𝑈𝜓 =

{
𝛾 ∈ 𝐿1 ( [0, 1]) : 𝜓 (·) = 𝑥 +

∫ ·
0 𝑏 (𝜓 (𝑠))𝑑𝑠 +

∫ ·
0 𝜎 (𝜓 (𝑠))𝛾 (𝑠)𝑑𝑠

}
.

The proof structure will follow the previous examples: establishing variational lower bounds via compactness
arguments and upper bounds via picking a near optimal control. Central to the proof, again, is the representation
formula.

Proposition 3.4 (Representation formula for Poisson processes). Let 𝐺 : 𝐷 [0, 1] → R be a bounded and Borel-
measurable and let 𝜃 ∈ (0,∞). Then,

− logE 𝑒−𝐺 (𝑁𝜃 ) = inf
𝜑∈A
E𝐺 (𝑁 𝜃𝜑 ) + 𝜃

∫ 1

0
ℓ (𝜑 (𝑠))𝑑𝑠. (3.7)

Moreover, for any 𝛿 > 0, there is an𝑀 = 𝑀 (∥𝐺 ∥∞, 𝛿) such that for all 𝜃 ,

− 1
𝜃

logE 𝑒−𝜃𝐺 (𝑁𝜃 ) ≥ inf
𝜑∈A𝑏,𝑀

E𝐺 (𝑁 𝜃𝜑 ) +
∫ 1

0
ℓ (𝜑 (𝑠))𝑑𝑠 − 𝛿. (3.8)

Proof of Theorem 3.3. We split the proof into four sections. First, we identify the variational form of interest for
the LDP. Then, we prepare ourselves for compactness arguments by establishing tightness of the state process and
controls. Finally, we prove the upper and lower bound for Laplace principle separately.
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Applying the variational formula To prove the Laplace principle, we are interested in functionals for the state
process 𝑋𝑛 . However, similar to the Brownian motion case, there is always a unique strong solution to the SDE such
that there is a measurable map G𝑛 : 𝐷 [0, 1] → 𝐷 [0, 1] such that 𝑋𝑛 = G𝑛 (𝑁𝑛). Therefore, for the rest of the proof,
we will fix a bounded continuous 𝐹 : 𝐷 [0, 1] → R, and since 𝐹 ◦ G is still bounded and measurable, we can apply
the variational formula:

−1
𝑛

logE 𝑒−𝑛𝐹 (𝑋
𝑛 ) = inf

𝜑∈A

{
E 𝐹 (𝑋𝑛) +

∫ 1

0
ℓ (𝜑 (𝑡))𝑑𝑡

}
(3.9)

≥ inf
𝜑∈A𝑏,𝑀

E 𝐹 (𝑋𝑛) +
∫ 1

0
ℓ (𝜑 (𝑠))𝑑𝑠 − 𝛿. (3.10)

The boundedness of controls is important for establishing tightness, which we are moving onto now.

Establishing tightness Let’s first consider the controls. The trick to establishing tightness for the set of control
realizations 𝑆𝑀 is to think of it as a subset of the space of measures and equip it with the topology of weak conver-
gence. That is, for each element 𝛾 ∈ 𝑆𝑀 , we associate a measure 𝜈𝛾 on [0, 1] equipped with the Borel 𝜎-algebra such
that 𝑣𝛾 (𝑑𝑥) = 𝛾 (𝑥)𝑑𝑥 , i.e.,

𝛾 ∈ 𝑆𝑀 ⇔
∫ 1

0
ℓ (𝛾)𝑑𝑠 = R(𝜈𝛾 ∥𝑚) ≤ 𝑀

where𝑚 is the Lebesgue measure. Then, compactness of 𝑆𝑀 follows from compactness of the support and lower-
semicontinuity of relative entropies; tightness of {𝜑𝑛} ⊂ A𝑏,𝑀 then follows from compactness of 𝑆𝑀 .

Now, let 𝑋𝑛 denote the controlled process, that is, it satisfies the SDE with initial condition

𝑑𝑋𝑛 (𝑡) = 𝑏 (𝑋𝑛 (𝑡))𝑑𝑡 + 1
𝑛
𝜎 (𝑋𝑛 (𝑡−))𝑑𝑁𝑛𝜑 (𝑡), 𝑋𝑛 (0) = 𝑥 . (3.11)

Consider the decomposition

𝑋𝑛 (𝑡) − 𝑥 =

∫ 𝑡

0
𝑏 (𝑋𝑛 (𝑠))𝑑𝑠 +

∫ 𝑡

0
𝜎 (𝑋𝑛 (𝑠))𝜑𝑛 (𝑠)𝑑𝑠 +

∫ 𝑡

0
𝜎 (𝑋𝑛 (𝑠−)) (𝑑𝑁𝑛𝜑𝑛 (𝑠)/𝑛 − 𝜑𝑛 (𝑠)𝑑𝑠). (3.12)

We will show tightness for each term. Starting with the last; let’s call it 𝑄𝑛 . The process {𝑄𝑛 (𝑡)}𝑡≥0 is a martingale
with quadratic variation

[𝑄𝑛] (𝑡) ≤ ∥𝜎 ∥2
∞

𝑛2 E

∫ 1

0
𝜑𝑛 (𝑠)𝑑𝑠 ≤ ∥𝜎 ∥2

∞
𝑛

(𝑒 +𝑀) (3.13)

where we’ve used the bound 𝑏 ≤ 𝑒 + ℓ (𝑏). By Burkholder-Gundy-Davis inequality,

E sup
𝑡 ∈[0,1]

|𝑄𝑛 (𝑡) | ≤ 𝑐1 E[𝑄𝑛] (1)1/2 → 0 (3.14)

for some constant 𝑐1 < ∞. Thus, by Chebyshev, 𝑄𝑛 converges weakly/in probability to zero; hence, tight.
Tightness of the first two termswill follow from estimates that show uniform equicontinuity. This is okay because

the first two terms along produce sample paths in𝐶 [0, 1], for which Arzela-Ascoli is sufficient for (pre-)compactness.
We’ve shown the ODE limit first to perhaps make this feel a bit better. Carrying out the estimates gives∫ 𝑡

𝑠

𝑏 (𝑋𝑛 (𝑠))𝑑𝑠 ≤ ∥𝑏∥∞ (𝑡 − 𝑠), (3.15)∫ 𝑡

𝑠

𝜎 (𝑋𝑛 (𝑠))𝜑𝑛 (𝑠)𝑑𝑠 ≤
∫ 𝑡

𝑠

𝑒𝑐 ∥𝜎 ∥∞ + ℓ (𝜑
𝑛 (𝑠))
𝑐

𝑑𝑠 ≤
(
𝑒𝑐 ∥𝜎 ∥∞ + 𝑀

𝑐

)
(𝑡 − 𝑠), (3.16)

and tightness follows from the bounds being uniform in 𝑛 and 𝜔 .
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Laplace upper bound We play the usual game. Take some 𝛿 > 0, choose𝑀 accordingly and sequence of controls
{𝜑𝑛}𝑛 ⊂ A𝑏,𝑀 that are 𝛿 optimizers for the representation formula. Then, we choose a subsequence (denoted by 𝑛
still) for which the pair (𝑋𝑛, 𝜑𝑛) converges in distribution. Then,

lim inf
−1
𝑛

logE 𝑒−𝑛𝐹 (𝑋
𝑛 ) ≥ lim inf E 𝐹 (𝑋𝑛) +

∫ 1

0
ℓ (𝜑𝑛 (𝑠))𝑑𝑠 − 2𝛿 (3.17)

≥ E 𝐹 (𝑋 ) +
∫ 1

0
ℓ (𝜑 (𝑠))𝑑𝑠 − 2𝛿 (3.18)

?
≥ E 𝐹 (𝑋 ) + 𝐼 (𝑋 ) − 2𝛿 (3.19)
≥ inf
𝜑∈𝐷 [0,1]

{𝐹 (𝜓 ) + 𝐼 (𝜓 )} − 2𝛿 (3.20)

where 𝑋 and 𝜑 denotes the corresponding limits (which we don’t know yet!) and the second inequality is due to
Fatou and lower semi-continuity of ℓ . Thus, it remains to show the unjustified inequality, which becomes clear as
we find the weak limit. On an 𝜔-by-𝜔 basis, consider 𝛾𝑛 → 𝛾 in 𝑆𝑀 and𝜓𝑛 → 𝜓 uniformly, we claim that∫ 1

0
𝜎 (𝜓𝑛 (𝑠))𝛾𝑛 (𝑠)𝑑𝑠 →

∫ 𝑡

0
𝜎 (𝜓 (𝑠))𝛾 (𝑠)𝑑𝑠. (3.21)

Indeed, using 𝑏 ≤ 𝑒 + ℓ (𝑏), we first get the estimate����∫ 1

0
(𝜎 (𝜓𝑛 (𝑠)) − 𝜎 (𝜓 (𝑠)))𝛾𝑛 (𝑠)𝑑𝑠

���� ≤ sup
𝑠∈[0,1]

|𝜎 (𝜓𝑛 (𝑠)) − 𝜎 (𝜓 (𝑠)) |
∫ 1

0
𝛾𝑛 (𝑠)𝑑𝑠 (3.22)

≤ sup
𝑠∈[0,1]

|𝜎 (𝜓𝑛 (𝑠)) − 𝜎 (𝜓 (𝑠)) | (𝑒 +𝑀) → 0. (3.23)

Moreover, since 𝜈𝛾𝑛 → 𝜈𝛾 in the weak topology and the map 𝑠 ↦→ 𝜎 (𝜓 (𝑠)) on [0, 1] is bounded and continuous, we
get ∫ 1

0
𝜎 (𝜓 (𝑠)) (𝛾𝑛 (𝑠) − 𝛾 (𝑠))𝑑𝑠 → 0. (3.24)

Then, we’ve shown that for all 𝜔 ,

𝑋 (𝑡) − 𝑥 =

∫ 1

0
𝑏 (𝑋 (𝑠))𝑑𝑠 +

∫ 1

0
𝜎 (𝑋 (𝑠))𝜑 (𝑠)𝑑𝑠 ; (3.25)

from which, the unjustified inequality follows as 𝜑 (𝜔) ∈ 𝑈𝑋 .

Laplace lower bound Again, pick your favorite 𝛿 > 0, and choose𝜓 ∗ such that

𝐹 (𝜓 ∗) + 𝐼 (𝜓 ∗) ≤ inf
𝜓 ∈𝐷 [0,1]

{𝐹 (𝜓 ) + 𝐼 (𝜓 )} + 𝛿 (3.26)

and let 𝜑 ∈ 𝑈𝜓 ∗ such that
∫ 1

0 ℓ (𝜑 (𝑠))𝑑𝑠 ≤ 𝐼 (𝜓 ∗) + 𝛿 := 𝑀 . As of now, it is now clear that 𝜑 ∈ A𝑏,𝑀 , so we will
parameterize and approximate

𝜑𝑞 (𝑡) =
(
𝜑 (𝑡) ∨ 1

𝑞

)
∧ 𝑞. (3.27)

As 𝑞 ↑ ∞, we can see that limits are well-behaved (by sandwiching and monotone convergence):∫ 1

0
ℓ (𝜑𝑞 (𝑠))𝑑𝑠 →

∫ 1

0
ℓ (𝜑 (𝑠))𝑑𝑠, 𝜓 ∗

𝑞 = 𝑥 +
∫ ·

0
𝑏 (𝜓 ∗ (𝑠)𝑑𝑠 +

∫ ·

0
𝜎 (𝜓 ∗ (𝑠))𝜑𝑞 (𝑠)𝑑𝑠 → 𝜓 ∗ . (3.28)

Thus, we have

lim sup
−1
𝑛

logE 𝑒−𝑛𝐹 (𝑋
𝑛 ) ≤ lim supE 𝐹 (𝑋𝑛) +

∫ 1

0
ℓ (𝜑𝑞 (𝑠))𝑑𝑠 = 𝐹 (𝜓 ∗

𝑞 ) +
∫ 1

0
ℓ (𝜑𝑞 (𝑠))𝑑𝑠 (3.29)
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Taking 𝑞 → ∞,

𝐹 (𝜓 ∗) +
∫ 1

0
ℓ (𝜓 (𝑠))𝑑𝑠 ≤ 𝐹 (𝜓 ∗) + 𝐼 (𝜓 ∗) + 𝛿 ≤ inf

𝜓 ∈𝐷 [0,1]
{𝐹 (𝜓 ) + 𝐼 (𝜓 )} + 2𝛿. (3.30)

Finally, taking 𝛿 ↓ 0 completes the proof. □

3.4 Small-noise limit of pure jump processes Now, we turn our attention to pure-jump processes in R𝑑 of
the form

𝑋𝜖 (𝑡) = 𝑥 + 𝜖
𝐾∑︁
𝑘=1

∫
[0,1]×R+

𝜈𝑘 (𝑋𝜖 (𝑠))1[0,𝜆𝑘 (𝑋𝜖 (𝑠 ) )/𝜖 ] (𝑦)𝑁 (𝑑𝑠, 𝑑𝑦). (3.31)

Alternatively, it is perhaps useful to consider the generator

L𝜖 𝑓 (𝑥) = 1
𝜖

𝐾∑︁
𝑘=1

𝜆𝑘 (𝑥) (𝑓 (𝑥 + 𝜖𝜈𝑘 (𝑥)) − 𝑓 (𝑥)) . (3.32)

The jump rate 𝜆𝑘 : R𝑑 → R+ and jump dynamics 𝜈𝑘 : R𝑑 → R𝑑 are assumed to be Lipschitz. Moreover, we assume
that there exists a 𝑐 > 0 such that | log 𝜆𝑘 (𝑥) | ≤ 𝑐 for all 𝑥 ∈ R𝑑 . Then, we’re again interested establishing an LDP
for the small-noise limit as 𝜖 → 0.

Theorem 3.5. For 𝜉 ∈ 𝐶 [0, 1] with 𝜉 (0) = 𝑥 , we let𝑈𝜉 be the set of measurable maps (controls) 𝜑 = {𝜑𝑖 }𝐾𝑖=1 such that

𝜉 (𝑡) = 𝑥 +
𝐾∑︁
𝑘=1

∫
[0,1]×R+

𝜈𝑘 (𝜉 (𝑠))1[0,𝜆𝑘 (𝜉 (𝑠 ) ) ] (𝑦)𝜑𝑘 (𝑠,𝑦)𝑑𝑠𝑑𝑦. (3.33)

Then, the sequence (𝑋𝜖 )𝜖>0 satisfies a LDP with rate 𝜖 and rate function

3.5 Application: importance sampling for rare events Importance sampling is a popular method for re-
ducing variance for Monte Carlo estimators, which becomes particularly handy when we’re trying to estimate prob-
abilities of rare events. Let’s fix a set 𝐴 ⊂ R𝑑 and we’re interested in the probability that a random variable 𝑌 with
law 𝜇 falls in 𝐴. The naive method is to sample {𝑌𝑛𝑗 }𝑛𝑗=1 i.i.d. from 𝜇 and construct the estimator

1
𝑛
𝑆𝑛 =

1
𝑛

𝑛∑︁
𝑗=1

1𝑌𝑛
𝑗
∈𝐴 .

Let 𝑝𝑛 = P(𝑆𝑛/𝑛 ∈ 𝐴) and let’s assume that 𝑌 has well-defined exponential moments such that the moment gener-
ating

function exists everywhere. Then, by Cramér’s theorem, we know that P ◦ (𝑆𝑛/𝑛)−1 satisfies the large deviation
principle with rate 𝐿 where

𝐿(𝛽) = sup
𝛼∈R𝑑

⟨𝛼, 𝛽⟩ − log𝐻 (𝛼), 𝐻 (𝛼) = logE 𝑒 ⟨𝛼,𝑌 ⟩ . (3.34)

4 High-dimensional Geometry

4.1 Projection along random directions In this section, let’s take a geometric view on Cramér’s theorem
in terms of projections onto ℓ2-balls. Consider a random vector 𝑋 (𝑛) = (𝑋 (1) , . . . , 𝑋 (𝑛) ) ∼ 𝜇⊗𝑛 and consider the
“diagonal” direction on the ℓ2-ball: 𝜄 (𝑛) = 𝑛−1/2 (1, 1, . . . ) ∈ 𝑆𝑛−1. Then, Cramér’s theorem provides a large deviation
principle for the (normalized) projection of the random vector 𝑋 in the direction 𝜄

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 =
1
√
𝑛
⟨𝜄, 𝑋 ⟩,
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which has a rate function 𝐼𝜄 = Λ∗. Perhaps it is natural to ask what happens when we choose some other (random)
direction 𝜃 ∈ 𝑆𝑛−1? The punchline here is that: we get an LDP with the same rate function for almost every 𝜃 and 𝜄
is not one of them!

Consider a probability space (Ω, F , P) where 𝑋 is defined on. Let 𝜎𝑛−1 be the rotationally-invariant measure on
the sphere 𝑆𝑛−1. Let S =

∏∞
𝑛=1 𝑆

𝑛−1 and the directions we choose 𝜃 = (𝜃 (1) , 𝜃 (2) , . . . ) ∈ Swill have law 𝜎 . We remark
the running assumption throughout the subsection:

Assumption 4.1. Define the coordinate map 𝜋𝑛 : 𝜃 = (𝜃 (1) , 𝜃 (2) , . . . ) ∈ S ↦→ 𝜃 (𝑛) , and let 𝛾 be a standard Gaussian
measure on R.

1. (Marginals are rotationally-invariant) For all 𝑛 ∈ N, 𝜎 ◦ 𝜋−1
𝑛 = 𝜎𝑛−1.

2. (Finite fourth-moment) For all 𝑡 ∈ R,
∫
Λ(𝑡𝑢)4𝛾 (𝑑𝑢) < ∞.

Remark 4.2. The first assumption subsumes the case of independent directions, i.e., 𝜎 = ⊗∞
𝑛=1𝜎𝑛−1, but dependencies

between 𝜃 (𝑛) ’s are allowed. Moreover, if 𝜇 admits a density 𝑓 , then sub-exponential tail, i.e., for |𝑥 | > 𝑐1, 𝑓 (𝑥) ≤
𝑐2𝑒

𝑐3 |𝑥 |𝑝 for 1 < 𝑝 < ∞.

Universality of the rate function is in the following sense.

Theorem 4.3 (Theorem 2.4 of [4]). For 𝜎-a.e. 𝜃 ∈ S, the sequence (𝑊 (𝑛)
𝜃

)𝑛≥0 where

𝑊
(𝑛)
𝜃

=
1
√
𝑛
⟨𝜃 (𝑛) , 𝑋 (𝑛)⟩

satisfies an LDP with a convex rate function 𝐼𝜎 = Ψ∗ where

Ψ(𝑡) =
∫

Λ(𝑡𝑢)𝛾 (𝑑𝑢). (4.1)

Remark 4.4. The universality is perhaps less surprising if 𝜎 = ⊗∞
𝑛=1𝜎𝑛−1. Since the random variable 𝐼𝜎 is in the

tail-𝜎-algebra generated by the 𝜃 (𝑛) ’s, it must be trivial and take constant values 𝜎-almost-everywhere. However,
the universality holds even for very dependent sequences of 𝜃 (𝑛) , so long as the marginals are rotationally-invariant.

The proof builds on the Gaussian characterization of surface measures and some manipulation for applying
Gartner-Ellis theorem. We will go through a few technical lemmas.

Lemma 4.5. Let A =
∏∞
𝑛=1 R

𝑛 denote the space of triangular arrays and let 𝑅 : A → A be the map such that for all
𝑧 = (𝑧 (1) , 𝑧 (2) , . . . ) ∈ A, we have the transformation

𝑧 (𝑛) ↦→ 𝑧 (𝑛)/∥𝑧 (𝑛) ∥

for each row 𝑛. Let 𝜋𝑛 : 𝑧 ∈ A ↦→ 𝑧 (𝑛) be the coordinate map onto the 𝑛-th row. If there is a measure 𝜁 ∈ P(A) such
that 𝜁 ◦ 𝜋−1

𝑛 = 𝛾⊗𝑛 , then 𝜎 = 𝜁 ◦ 𝑅−1 satisfies Item 1 of Assumption 4.1. Conversely, if 𝜎 satisfies Item 1 of Assumption
4.1, then there is a 𝜁 ∈ P(A) such that 𝜎 = 𝜁 ◦ 𝑅−1.

Proof. This is due to the fact that if 𝑍 (𝑛) ∼ 𝛾⊗𝑛 , then 𝑍/∥𝑍 ∥ ∼ 𝜎𝑛−1. □

The above lemma implies that for every 𝜎 satisfying the assumptions, we can find an equivalent 𝜁 such that

1
√
𝑛
⟨𝜃 (𝑛) , 𝑋 (𝑛)⟩ with 𝜃 ∼ 𝜎 ≡

√
𝑛

∥𝑧 (𝑛) ∥
· 1
𝑛

𝑛∑︁
𝑖=1

𝑧
(𝑛)
𝑖
𝑋𝑖 with 𝑧 ∼ 𝜁 . (4.2)

Therefore, proving an LDP for (𝑊 (𝑛)
𝜃

)𝑛 that holds for 𝜃 𝜎-a.e. is equivalent to proving an LDP for
( √

𝑛

∥𝑧 (𝑛) ∥𝑊
(𝑛)
𝑧

)
𝑛
with

𝑊
(𝑛)
𝑧 =

1
𝑛

𝑛∑︁
𝑖=1

𝑧
(𝑛)
𝑖
𝑋𝑖
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for 𝑧 𝜁 -a.e. It is perhaps reasonable to think that, by Gartner-Ellis, (𝑊 (𝑛)
𝑧 )𝑛 satisfies an LDP. Therefore, we want to

show that the factor
√
𝑛/∥𝑧 (𝑛) ∥ in front in unproblematic. Indeed, we have a reason to believe this is true as

√
𝑛

∥𝑧 (𝑛) ∥
=

(
1
𝑛

𝑛∑︁
𝑖=1

𝑧2
𝑖

)−1/2

→ 1 (4.3)

under 𝜁 due to the strong law of large numbers. Rigorously, we do this by defining exponential equivalences between
random variables and show that this does not interfere with LDPs.

Definition 4.6. We say that two random variables 𝜉 and 𝜉 are exponentially equivalent if for all 𝛿 > 0,

lim sup
𝑛→∞

1
𝑛

logP( |𝜉𝑛 − 𝜉𝑛 | > 𝛿) = −∞. (4.4)

Lemma 4.7. Let (𝜉𝑛)𝑛 be a sequence of random variables satisfying an LDP with rate function 𝐼 , and let 𝜉𝑛 = 𝑎𝑛𝜉𝑛
where 𝑎𝑛 → 1 is a deterministic sequence. If 𝐼 has convex level sets, then (𝜉𝑛)𝑛 and (𝜉𝑛)𝑛 are exponentially equivalent.

Proof. For any 𝜖 , there is an 𝑁 be such that |1 − 𝑎𝑛 | < 𝜖 for 𝑛 ≥ 𝑁 . This means, for any 𝛿 > 0, |𝜉𝑛 − 𝜉𝑛 | ≥ 𝛿 only if

|𝜉𝑛 | ≥
𝛿

1 − 𝑎𝑛
≥ 𝛿

𝜖
. (4.5)

So, for any fixed 𝛿 > 0,

lim sup
1
𝑛

logP( |𝜉𝑛 − 𝜉𝑛 | > 𝛿) ≤ lim sup
1
𝑛

logP
(
|𝜉𝑛 | ≥

𝛿

𝜖

)
≤ − inf

|𝑥 |>𝛿/𝜖
𝐼 (𝑥) = −

(
𝐼

(
𝛿

𝜖

)
∧ 𝐼

(
−𝛿
𝜖

))
. (4.6)

Since 𝐼 has compact level sets, it has a global minimizer 𝑥 . Choose 𝜖 such that |𝛿/𝜖 | ≥ |𝑥 |, then 𝐼 is non-decreasing
(non-increasing) when 𝑥 > 𝛿/𝜖 (𝑥 < −𝛿/𝜖) by level sets being convex and hence, coercive. Thus, letting 𝜖 ↓ 0, we
have exponential equivalence. □

Lemma 4.8. Let (𝜉𝑛)𝑛 and (𝜉𝑛)𝑛 be exponentially equivalent random variables. If (𝜉𝑛)𝑛 satisfies an LDP with rate
function 𝐼 , then so does (𝜉𝑛)𝑛 .

Proof. For the large deviation upper bound, let 𝐸 be a closed set. Then, for any 𝛿 > 0, we can write

lim sup
1
𝑛

logP(𝜉 ∈ 𝐸) ≤ lim sup
1
𝑛

log
(
P(𝜉𝑛 ∈ 𝐸 + 𝛿) + P( |𝜉𝑛 − 𝜉𝑛 | > 𝛿)

)
(4.7)

where 𝐸 + 𝛿 = {𝑥 : 𝑑 (𝑥, 𝐸) < 𝛿}. Then, using the fact that sum is exponentially equivalent to maximum, we can
write

lim sup
1
𝑛

log
(
P(𝜉𝑛 ∈ 𝐸 + 𝛿) + P( |𝜉𝑛 − 𝜉𝑛 | > 𝛿)

)
≤ − inf

𝑥∈𝐸+𝛿
𝐼 (𝑥) ∨ −∞ (4.8)

which yields the large deviation upper bound by taking 𝛿 ↓ 0.
On the other hand, it suffices to prove the lower bound for balls 𝐵2𝛿 (𝑦) for some 𝑦 in the state space, 𝛿 > 0.

Observe that

lim inf
1
𝑛

logP(𝜉𝑛 ∈ 𝐵2𝛿 (𝑥)) = lim inf
1
𝑛

logP(𝜉𝑛 ∈ 𝐵𝜖 (𝑦)) ∨ lim sup
1
𝑛

logP( |𝜉𝑛 − 𝜉𝑛 | > 2𝛿) (4.9)

≥ lim inf
1
𝑛

log
(
P(𝜉𝑛 ∈ 𝐵2𝛿 (𝑦)) + P( |𝜉𝑛 − 𝜉𝑛 | > 2𝛿)

)
. (4.10)

Notice that {𝜉𝑛 ∈ 𝐵𝛿 (𝑦)} ⊂ {𝜉𝑛 ∈ 𝐵2𝛿 (𝑦)} ∪ {|𝜉𝑛 − 𝜉𝑛 | > 2𝛿}, so

lim inf
1
𝑛

log
(
P(𝜉𝑛 ∈ 𝐵2𝛿 (𝑦)) + P( |𝜉𝑛 − 𝜉𝑛 | > 2𝛿)

)
≥ lim inf

1
𝑛

logP(𝜉𝑛 ∈ 𝐵𝛿 ) = − inf
𝑥∈𝐵𝛿 (𝑦)

𝐼 (𝑥). (4.11)

Approximating open sets as union of balls completes the proof. □
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Proof of Theorem 4.3. By the previous lemmas, all that is left to prove is an LDP for the sequence (𝑊 (𝑛)
𝑧 )𝑛 for 𝑧 𝜁 -a.e.

For now, fix a 𝑧 ∈ A and we will apply Gartner-Ellis. Consider the limiting log-MGF:

lim
𝑛→∞

1
𝑛

logE exp
(
𝑛𝑡𝑊

(𝑛)
𝑧

)
= lim
𝑛→∞

1
𝑛

logE exp

(
𝑡

𝑛∑︁
𝑖=1

𝑧
(𝑛)
𝑖
𝑋

(𝑛)
𝑖

)
. (4.12)

By independence of 𝑋𝑖 ’s, we can rewrite the above into

lim
𝑛→∞

1
𝑛

log
𝑛∏
𝑖=1
E exp

(
𝑡𝑧

(𝑛)
𝑖
𝑋

(𝑛)
𝑖

)
= lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

Λ(𝑡𝑧 (𝑛)
𝑖

). (4.13)

First, for a fixed 𝑡 , the finite fourth-moment condition above gives a law of large numbers for triangular array and

lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

Λ(𝑡𝑧 (𝑛)
𝑖

) =
∫

Λ(𝑡𝑢)𝛾 (𝑑𝑢) = Ψ(𝑡) (4.14)

𝜁 -almost surely. Moreover, since Λ is convex and finite everywhere (by assumption), the above limit stays convex
and finite, hence, continuous in 𝑡 . Therefore, it suffices for the convergence in 𝑛 to hold for countably many 𝑡 and
extend by continuity. Thus, the set of measure zero remains measure zero and convergence to Ψ holds 𝜁 -a.e.

Lastly, in order to get a true LDP from Gartner-Ellis, we need some regularity on Ψ so that there is an exposing
hyperplane for every point in the state space. This amounts to showing differentiability of Ψ, which is implied by
𝑡 ↦→ Λ(𝑡𝑢) being differentiable if we can swap integration and limits.

For a fixed 𝑡 , take some 𝛿 = [−1, 1]. Then, by mean value theorem, we can bound the difference quotient����Λ(𝑢 (𝑡 + 𝛿)) − Λ(𝑢𝑡)
𝛿

���� ≤ sup
𝛼∈[−1,1]

|Λ′ (𝑢 (𝑡 + 𝛼))𝑢 | ≤ |Λ′ (𝑢 (𝑡 − 1))𝑢 | + |Λ′ (𝑢 (𝑡 + 1))𝑢 | (4.15)

where the inequality is due to the monotonicity of Λ′. However, by convexity,

Λ(𝑢 (𝑡 − 1)) − Λ(𝑢 (𝑡 − 2)) ≤ Λ′ (𝑢 (𝑡 − 1))𝑢 (𝑡 − 1) ≤ Λ(𝑢𝑡) − Λ(𝑢 (𝑡 − 1)) (4.16)

and similarly for Λ′ (𝑢 (𝑡 + 1))𝑢. Thus, |Λ′ (𝑢 (𝑡 − 1))𝑢 | + |Λ′ (𝑢 (𝑡 + 1))𝑢 | in integrable by integrability assumption on
Λ and Ψ is differentiable by dominated convergence.

Therefore, by Gartner-Ellis, (𝑊 (𝑛)
𝑧 )𝑛 satisfies an LDP with rate function Ψ∗ for 𝜁 -a.e. 𝑧; or alternatively, (𝑊 (𝑛)

𝜃
)𝑛

satisfies an LDP with rate function Ψ∗ for 𝜎-a.e. 𝜃 . □

Remark 4.9.We can prove the LDP for (𝑊 (𝑛)
𝑧 )𝑛 via weak convergence. We can get the variational characterization

of the rate function

Ψ∗ (𝑥) = inf
𝜈 ( · |𝑧 )

{∫
R(𝜈 (·|𝑧)∥𝜇)𝛾 (𝑑𝑧) :

∫
𝑧𝑥𝜈 (𝑑𝑥 |𝑧)𝛾 (𝑑𝑧)

}
. (4.17)

Now, we’ve established the universality for large deviation rate functions for weighted sums of i.i.d. random
variables up to a set of measure-zero. Let’s examine this null set more carefully; in particular, we want to compare
𝐼𝜎 with 𝐼𝜄 , the rate function obtained from Cramér’s theorem, as empirical sums are typically the object of interest.
For 𝜇 = 𝛾 , we have ∫

Λ(𝑢𝑡)𝛾 (𝑑𝑢) =
∫ (𝑢𝑡)2

2
𝛾 (𝑑𝑢) = 𝑡2

2
= Λ(𝑡), (4.18)

so 𝐼𝜎 = 𝐼𝜄 coincide. However, you can see that Gaussianity played a huge role here. The next theorem characterizes
the atypicality of Cramér’s theorem in terms of concavity when compared to the Gaussian.

Theorem 4.10 (Theorem 2.5 of [4]). Assume that Λ(𝑡) = Λ(−𝑡) for all 𝑡 . Then,

1. If Λ ◦ √· is concave, then 𝐼𝜎 ≥ 𝐼𝜄 .

2. If Λ ◦ √· is convex, then 𝐼𝜎 ≤ 𝐼𝜄 .
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3. If Λ ◦ √· is concave or convex but not linear, then 𝐼𝜎 = 𝐼𝜄 only at zero.

Proof. First, suppose Λ ◦ √· is concave. Let 𝑍 ∼ 𝛾 , then using the symmetry and Jensen, we get

Ψ(𝑡) = EΛ(𝑡𝑍 ) = EΛ((𝑡2𝑍 2)1/2) ≤ Λ(E(𝑡2𝑍 2)1/2) = Λ(𝑡). (4.19)

Hence, Ψ∗ ≥ Λ∗ everywhere as claimed. Notice that the above chain of computation yields equality if and only if
Λ◦√· is linear or the argument inside is degenerate, which happens if and only if 𝑡 = 0. So, let 𝑡𝑥 = argmax𝑡 {𝑡𝑥−Λ(𝑡)},
then

Ψ∗ (𝑥) ≥ 𝑡𝑥𝑥 − Ψ(𝑡𝑥 ) ≥ 𝑡𝑥𝑥 − Λ(𝑡𝑥 ) = Λ∗ (𝑥) (4.20)

with the second inequality turning an equality if and only if 𝑡𝑥 = 0. However, 𝑡𝑥 = 0 occurs only when 𝜕𝑥Λ∗ (𝑥) = 0,
which by symmetry and strict convexity within its domain, occurs if and only 𝑥 = 0.

The same analysis can be repeated for the case of Λ ◦ √· is convex with reversed inequalities. □

Therefore, Cramér’s theorem is indeed atypical! Unless 𝜇 is a standard Guassian, the universal rate function is
not that of the empirical measure scaling. For the class of distributions with scale parameter 𝛼 > 0 and shape 𝛽 > 1
where

𝜇𝛼,𝛽 (𝑑𝑥) =
1

2𝛼Γ(1 + 𝛽−1) 𝑒
−( |𝑥 |/𝛼 )𝛽𝑑𝑥, (4.21)

we can make direct comparison between 𝐼𝜎 and 𝐼𝜄 via studying the concavity compared to the Guassian distribution.

4.2 Spectral of random matrices: limit theory

4.3 Spectral of random matrices: large deviation
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A Reading Notes

A.1 Week 1

1. Why is it about moment generating functions?

2. For the Legendre transform, at least in our case, we have the following relationship: (𝑓 )∗′ (𝑝) = (𝑓 ′)−1 (𝑝).
Note that the −1 is the inverse of the function.

3. Why, intuitively, the answer is the Legendre transform of log mgf?

4. The rate of the tail P(𝑆𝑛 ≥ 0) is estimated, and this is non-trivial since you cannot get it from CLT directly
(you are not evaluating the tail at a fixed interval, the interval itself is shrinking)

5. how does page 11 work rigorously?

6. I don’t see the open set is needed on page 15

7. Does the paradigm “rare events happen in themost likely of unlikely ways” say anything about the distribution
conditioned on a rare event?

8. Chatterjee Dembo?

A.2 Week 2

1. Page 21: 𝜇𝑛𝑖 is a random measure, so what does it mean to have 𝜇∗𝑖 = 𝜇
∗?

2. Relative entropy always well-defined? How to derive “from first principle” variational formulas, e.g., Donsker-
Varadhan?

3. Hints on Problem 4 and 12? Precise definition of liminf?

A.3 Week 3
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B Exercises
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