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Suppose you receive a sample XT from a trajectory of the Ornstein-Uhlenbeck (ou) process

dXt = −Xtdt+
√
2dBt, X0 ∼ µ0(1)

for some T > 0. Is it possible for you to reconstruct the initial conditions X0? Unless T happens to be very
small or you have a priori knowledge on µ0—which we will rule out for the remainder of the note—your
guess for X0 is likely not very good. In particular, for large T , µT := L(XT ) ≈ γ where γ is a standard
Gaussian.

We can ask a weaker question. Let X(i) be independent samples from the ou process and let τ (i) be

independent uniform draws from the interval [0, T ]. Now, you’re given instead the collection {X(i)

τ(i)}ni=1,
can we reconstruct the initial distribution µ0 suitably well? This problem is more feasible; here’s an idea:
suppose there is a way to reverse time, i.e., construct a function u : R+ × Rd → Rd such that the reversed
sde

dX̄t = (X̄t + u(t, X̄t))dt+
√
2dB̄t, X̄0 ∼ µT(2)

has the same law (on path space) as the forward sde (1). Then, if we can 1) estimate u with the samples at
hand, and 2) approximate µT with γ, we can approximately draw samples from µ0 by simulating (2).

It turns out that not only does this method work, it works miraculously well! This general approach—with
engineering tricks sprinkled on top—is now the backbone of the most impressive image generation tools like
DALLE-2. We would begin by investigating the existence of this time-reversal function u. Then, we will
sketch out the real problem we are interested in, i.e., generative modeling, and some implementation details.
We will conclude with a quick convergence proof and why proving convergence alone does not say much
about statistical behavior.

1. Going in back in time

Reversing deterministic dynamics is easy. Take a general ode

d

dt
xt = b(t, xt), x0 = x.

Time reversal follows from a change-in-variable t 7→ T − t, from which we get

d

dt
x̄t = −b(T − t, x̄t), x̄0 = xT .
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However, life is not so simple for stochastic dynamics. Take a generic sde with constant diffusion coefficient

dXt = b(t,Xt)dt+
√
2dBt, X0 = x.(3)

An immediate problem comes from specifying the terminal condition X̄T = x almost surely. Something
about randomness requires adding some non-trivial forcing to the dynamics to get the dynamics to behave
statistically the same. This suggests that it is a good idea to start by working on the distributional level
rather than trying to get a pathwise description.

1.1. A deterministic argument. We begin with a heuristic derivation of the time reversal by reversing the
Fokker-Planck equation, which we’ve determined is easy. Start by writing the associated forward equation
of the density (µt)t≥0 for (3):

∂tµt(x) = −∇ · (b(t, x)µt(x)) + ∆µt(x).

Time reversing µt as a deterministic function then gives

∂tµ̄t(x) = ∇ · (b(T − t, x)µ̄t(x))−∆µ̄t(x).(4)

However, this does not look like a Fokker-Planck equation because of the −∆µ̄t term. So, we will be clever
and notice that

∆µ̄t = ∇ · ∇µ̄t = ∇ · (µ̄t∇ log µ̄t)

so we can move this inside the divergence term. Now, we can rewrite (4) to

∂tµ̄t(x) = ∇ · ((b(T − t, x)− 2∇ log µ̄t(x))µ̄t(x)) + ∆µ̄t(x),

which corresponds to the time marginals of the sde

dX̄t = (−b(T − t, X̄t)− 2∇ logµT−t(X̄t))dt+
√
2dB̄t.(5)

This gives our candidate u as the gradient of the log-density, i.e.,

u(t, x) = 2∇ logµT−t(x).

A downside of working with pdes is the fact that regularity becomes important. It turns out the standard
Lipschitz, linear-growth conditions in addition to Hormander-type regularity on the density is enough for the
reversal formula to hold [7]. For those of us who are not well-versed in regularity, there is a more probabilistic
approach.

Remark 1.1 (Nonlinear Markov processes). The reversed sde (5) is an example of a nonlinear Markov
process in the sense that the evolution of the system depends on its own marginal. Alterantively, the
associated Fokker-Planck equation is a nonlinear pde. The study of mean-field theory—in some sense,
the theme of the research group—dedicates itself to understanding properties of similar nonlinear Markov
processes that arise from interacting particle systems.

Remark 1.2 (Time reversal gives weak solutions). It is important to note that, while the forward process
might admit a unique strong solution, the reversed process is only given as weak solutions! For example,
Haussmann and Pardoux [7] showed the time-reversal formula in terms of the solution to the appropriate
martingale problem, which gives weak solutions. Föllmer’s approach [5, 6] in the next section will also only
rely on distributional properties on path space rather than pathwise properties. We will come back to this
point later.

1.2. A stochastic argument. The key to the stochastic argument is to interpret the drift coefficient as
certain stochastic derivatives. We begin with a proposition that makes this precise.

Proposition 1.3 ([6, Proposition 2.5]). Suppose that the drift coefficient in (3) is such that

E

[∫ T

0

|b(t,Xt)|pdt

]
< ∞

for some p ≥ 1. Then, for almost all t ∈ [0, T ], we have

b(t,Xt) = lim
h→0

1

h
E[Xt+h −Xt|Ft]

where (Ft)t≥0 is the natural filtration of X and the limit is in Lp.
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Let’s first carry out some computation, assuming all limits exist, to obtain the same time-reversed drift.
Thinking on the canonical space C([0, T ];Rd), let P be the law of X. Moreover, denote R : C([0, T ];Rd) →
C([0, T ];Rd) to be the reversal map R(x)t = xT−t. Then, we are interested in the drift coefficient b̄ for the
diffusion process characterized by the P̄ = R#P. By Proposition 1.3 and assuming the desired integrability,
we know that b̄ can be written as the limit

b̄(t, X̄t) = lim
h→0

1

h
Ē[X̄t+h − X̄t|F̄t]

where F̄t is the natural filtration of X̄. By Itô’s formula, we also know that for all f ∈ C2
0 (Rd;R),

Ē
[
b̄(t, X̄t)f(X̄t)

]
= lim

h→0

1

h
Ē
[
(X̄t+h − X̄t)f(X̄t)

]
= − lim

h→0

1

h
E
[
(Xt −Xt−h)

[
f(Xt−h) +

∫ t

t−h

∇f(Xs) · dXs +

∫ t

t−h

∆f(Xs)ds

]]
= −E[b(t,Xt)f(Xt)]− 2E[∇f(Xt)]

= −Ē[b(T − t, X̄t)f(X̄t)]− 2E[∇f(X̄t)].

Rearranging the above while assuming the density µt(x) exists, we get

2

∫
Rd

∇f(x)µT−t(x)dx = −2

∫
Rd

f(x)∇µT−t(x)dx = −
∫
Rd

(b(T − t, x) + b̄(t, x))f(x)µT−t(x)dx,

alternatively, it means that

2∇µT−t(x) = µT−t(x)(b(T − t, x) + b̄(t, x)).

weakly. Rearranging the above yields the same time-reversed drift.
In order for Proposition 1.3 to apply, we will take the particular case of p = 2 due to its connection with

entropy via Cameron-Martin-Girsanov. Recall the definition of relative entropy

H(µ∥ν) =


∫

log
dµ

dν
dµ if µ ≪ ν

+∞ if µ ̸≪ ν.

In particular, if we assume 1) the initial distribution admits a density with respect to Lebesgue measure
µ0 ≪ λ, 2) the entropy H(P∥W) is finite where W is the σ-finite measure

W =

∫
Rd

Wxdx(6)

and Wx is the law of
√
2B with initial conditions x. The first condition will guarantee the density µt(x)

exists and the weak derivative of the density makes sense. The second condition will give the finite L2-energy
that we need to make sense of the stochastic derivative, that is,

H(P∥W) = H(µ0∥λ) +
∫
C([0,T ];Rd)

[∫ T

0

b(t, xt)dxt −
1

2

∫ T

0

|b(t, xt)|2dt

]
P(dx)

= H(µ0∥λ) +
∫
C([0,T ];Rd)

[∫ T

0

b(t, xt)dβt +
1

2

∫ T

0

|b(t, xt)|2dt

]
P(dx)

= H(µ0∥λ) + E

[
1

2

∫ T

0

|b(t,Xt)|2dt

]
where βt = xt −

∫ t

0
b(s, xs)ds is a (scaled) Brownian motion under P. In particular, since W = R#W,

H(P̄∥R#W) = H(P∥W) < ∞,

which implies the reversed process has finite L2-energy and the use of Proposition 1.3 is justified.

Remark 1.4 (Local finite entropy). The reason for using (6) instead of a probability measure is for simplicity
of the argument. Take for example µ0 = δ0. Then, reversing W0 leads to singular behavior at terminal time,
leading one to believe that the finite energy only holds only locally when we drop the condition µ0 ≪ λ.
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However, finite entropy of the forward process indeed is enough to guarantee the time-reversal formula in
(0, T ) and the argument lengthens; see [6, Lemma 3.1].

2. Mapping noise to data

Now, we return to the main task of this note: generative modeling. In some sense, this is a density
estimation problem, but we will see soon that we care about something different. Concisely put, we have
data {X(i)}ni=1 drawn i.i.d. from some distribution µ∗ and we want to generate more statistically similar
samples. These problems enjoy a wide range of applications. Most notably so, it generates fun images and
videos. But it is also used for drug design where the data is existing protein configurations and we use
generative models to guess new protein structures.

Remark 2.1 (Terminology issues). The term generative modeling has evolved significantly. Traditionally,
we think of generative models as some sort of (hierarchical) Bayesian models where the generation comes
from the posterior predictive distributions. More recently, a theoretically unjustified method—a.k.a. machine
learning—took over the term “generative modeling” to refer to deep-learning-based Boltzmann machines,
variational autoencoders, and generative adversarial networks.

2.1. Diffusion models and score-matching. Denoising diffusion probabilistic models (ddpms) are fairly
recent methods. It first appeared in discrete-time and derived within the context of variational inference
[12,13]. However, the method did not take off until Song et al. [14] put it into the continuous-time framework.
Subsequent works following the footsteps are enumerable and I will not attempt to provide a “complete” (in
whatever sense) list of related work, instead, I will only refer to ones that are relevant; interested readers
can find further references therein.

X(i) ∼ µ∗ Simulate dXt = −Xtdt+
√
2dBt with X0 = X(i)

µT

X̂T ∼ µ̂T ≈
Simulate dX̂t = (X̂t + û(t, X̂t))dt+

√
2dB̄t

γ

≈≈

The idea of ddpms was sketched out in the introduction, but we reiterate it here. For each data point X(i),
we associate a forward process—usually the ou process (1)—with initial condition X0 = X(i) that converges
to some easy-to-sample invariant measure γ. Using these trajectories, we can learn the score function

u(t, x) = 2∇ logµT−t(x)

for all (t, x) ∈ [0, T ]× Rd. Then, using the estimated score û, we can simulate X̄, the reverse sde (5), with
initial distribution γ and obtain an approximate sample from µ∗ ≈ X̄T .

The only problem here is how should u be estimated and this is more broadly—beyond ddpm, though
certainly most well-known in the context of ddpm—known as score matching. And the solution is really not
so clever: take your favorite function class F , e.g., artificial neural network, and perform the optimization

min
û∈F

E[∥u(t, x)− û(t, x)∥2]

where the expectation is over random times t ∼ Uniform([0, T ]) and random positions from the forward
process x ∼ Xt. However, it is impossible to evaluate this loss function because u is unknown. So, we need
to do a little more work: for any fixed t ∈ [0, T ],

argmin
û∈F

E[∥u(t, x)− û(t, x)∥2] = argmin
û∈F

∫
Rd

(2û(t, x) · ∇ logµt(x) + ∥û(t, x)∥2)µt(x)dx

= argmin
û∈F

∫
Rd

(−2∇ · û(t, x) + ∥û(t, x)∥2)µt(x)dx

= argmin
û∈F

E[∥û(t, x)∥2 − 2∇ · û(t, x)].

Of course, instead of evaluating the expectation, we simply minimize the empirical risk. Moreover, the
sample will be obtained by simulating the sde via (almost) Euler-Maruyama. To distinguish the process run

with the true score u and the estimated, discretized score û, we will use X̂ and µ̂t = L(X̂t) to denote the
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approximate backward process. More explicitly, for discretization step h = T/N , the process X̂ follows the
solution of an sde with piecewise-constant drift

dX̂t = (X̂t + û(kh, X̂kh))dt+
√
2dB̄t(7)

for t ∈ [kh, (k + 1)h).

Remark 2.2 (Stochastic localization and message-passing). It is worth noting that there is another way
to think about ddpms through the lens of stochastic localization. This is a technique originally used to
study high-dimensional convex bodies and Markov chain mixing, which Lee and Vampala [8] and Chen [2]
used to tackle the famous KLS conjecture. Using the mimicking theorem, Montanari [11] gave a stochastic
localization approach to solving the same problem. Instead of estimating the score, the main hurdle is to
estimate the conditional expectation term from the mimicking theorem, which he attacked with the rich
theory of message-passing algorithms. Similar ideas were used by Huang, Montanari, and Pham [11] for
sampling from mean-field spin glasses.

2.2. Convergence in total variation. Seeing the success of diffusion models, mathematicians were excited:
this is perhaps the biggest victory for stochastic analysis since mathematical finance! However, the idea of
ddpms is not well-studied, and with great interest (citations) comes great number of papers trying to establish
theoretical underpinnings of these diffusion-based, score-based generative models. Below, we give one that
is particularly liked by the community.

Theorem 2.3 ([1, Theorem 2]). Assume the following:

(1) for all t ≥ 0, u(t, ·) is L-Lipschitz;
(2) the data distribution µ∗ has finite second moment m :=

∫
Rd ∥x∥2µ∗(dx);

(3) the estimated score is close to the true score, i.e., E[∥u(t, ·)− û(t, ·)∥2] ≤ ϵ2score for all t ≥ 0.

Then, running ddpm with time steps h = T/N gives

dtv(µ̂T , µ
∗) ≤ e−TH(µ∗∥γ)1/2 + (L

√
dh+ Lmh)

√
T + ϵscore

√
T .

Remark 2.4 (On sore estimation error). Getting ϵscore not as an assumption is difficult because the typical
function estimator is a deep neural network and we barely have a grasp on statistical properties of them.
However, under the assumption that µ∗ is a Markov random field, Mei and Wu [10] were able to establish
properties of deep-neural-network estimation for the score function using techniques from message-passing.

Remark 2.5 (Interpreting the convergence). Suppose that H(µ∗∥γ) = O(poly(d)) and m = O(d). Then,
we can choose T = Θ(H(µ∗∥γ)/ϵ) and h = Θ(ϵ2/L2d), we can get

dtv(µ̂T , µ
∗) = Õ(ϵ+ ϵscore) for N = Θ̃

(
L2d

ϵ

)
.

This complexity bound in fact matches the state-of-the-art bound for Langevin Monte Carlo [3].

Proof. We only give a sketch and the full proof can be found in [1, Section 5]. Let P̄ and P̂ denote the law

of X̄ from (2) and X̂ from (7) respectively, both with initial distribution L(XT ).

(1) If we can apply Girsanov’s theorem, then the relative entropy would take the form

H(P̂∥P̄) = 1

2

N−1∑
k=0

E

[∫ (k+1)h

kh

∥û(hk,Xkh)− u(t,Xt)∥2dt

]
.

We will proceed by bounding the error accumulated from discretization, then carefully applying
Girsanov.

(2) For t ∈ [kh, (k + 1)h), we can write

E
[
∥û(hk,Xkh)− u(t,Xt)∥2

]
≤ E

[
∥û(hk,Xkh)− u(hk,Xhk)∥2

]
+ E

[
∥u(hk,Xkh)− u(t,Xhk)∥2

]
+ E

[
∥u(t,Xkh)− u(t,Xt)∥2

]
≤ ϵ2score + E

[
∥u(hk,Xkh)− u(t,Xhk)∥2

]
+ L2 E

[
∥Xkh −Xt∥2

]
.

The second term can be bounded by exploiting the choice of an ou process, which gives

E
[
∥u(hk,Xkh)− u(t,Xhk)∥2

]
≲ L2dh+ L2h2 E[∥Xkh∥2] + L2h2 E[∥u(t,Xkh∥2].
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Lastly, the expected norm of the score and X can be bounded by L, d, m, and h. In particular, we
will arrive at the estimate

E
[
∥û(hk,Xkh)− u(t,Xt)∥2

]
≲ ϵ2score + L2dh+ L2m2h2.

(3) A priori, we do not have enough integrability for Girsanov to hold exactly. However, the estimate
in the previous step implies that there is a sequence of stopping times τn → ∞ a.s. such that if we
define Xn to be

dXn
t = (Xn

t + 2û(kh,Xn
kh)1[0,τn]dt+ (Xn

t + 2û(t,Xn
t ))1(τn,T ]dt+

√
2dB̄t

and denote Pn := L(Xn), we can apply Girsanov for each n. Lastly, by lower semicontinuity and an
additional approximation argument (which crucially uses a coupling argument), we have

H(P̄∥P̂) ≤ lim inf
n→∞

H(P̄∥Pn) ≲ ϵ2score + L2dh+ L2m2h2.

(4) Lastly, we convert entropy estimates to total variation. Let Q be the law of the backward process
(2) with initial distribution γ. By Pinsker’s inequality,

dtv(µ̂T , µ
∗) ≤ dtv(P̂, P̄) + dtv(P̄,Q) ≲ e−TH(µ∗∥γ)1/2 + (ϵscore + L

√
dh+ Lmh)

√
T .(8)

□

Remark 2.6 (Lipschitz score functions?). A crucial part of the approximation argument was established
using a coupling argument, which requires the existence of strong solutions of the reversed process. Hence,
this motivated the authors to add the Lipschitz condition to u, which is not uncommon in the machine
learning literature. However, as pointed out before, time-reversal in inherently a statement on the law. A
more refined argument that respects this subtlety was offered by Conforti, Durmus, and Silveri [4] using
ideas from stochastic control.

2.3. Why we shouldn’t care about convergence. Sure, convergence is nice, but are good convergence
rates the end of the story? In particular, what is the fundamental difference between ddpm and some more
traditional density estimation methods like the kernel density estimate (kde)? For a fixed with σ, the kde
of µ∗ is simply saying

µ∗ ≈ ρσ :=
1

n

n∑
i=1

γX(i),σ

where γx,σ is a mean x, variance σ2 Gaussian.
We know basically all there is to know about kde—bias, variance, finite-sample concentration. Most

importantly, we know it is a terrible method for generative modeling because I simply place a mass around
the data points I’ve previously seen. In essence, I would be seeing replicas of the data. So, ddpm must be
better... right?

Wrong.

Theorem 2.7 ([9, Theorem 4.3]). Consider the ddpm output µ̂T with an empirically optimal score function.
Moreover, suppose ∥X(i)∥ ≤ d for all i. For any ϵ > 0, setting T = log d/ϵ and δ = ϵ2/d, we have

dtv(µ̂T−δ, ρσ) ≤ ϵ

where σ =
√
1− e−2δ. Moreover, taking T → ∞ and δ = 0, we have µ̂∞ = ρ0.

The proof follows from the observation that the empirically optimal score function is exactly that of
the theoretical one when initialized with empirical measures. Moreover, the theoretical forward process
is nothing but a kde. From which, convergence results guarantee that we’re not far optimal given that
the empirically optimal one is not far from a kde. The computations are short and, one could argue, not
insightful [9, Appendix D]; however, I think it is exactly the conciseness that emphasizes the dearth of true
theoretical understanding on ddpms.

This problem of memorization effects has surfaced recently as text-to-image generators started generating
copyrighted content [15]. Perhaps, it is important to start making the mathematical distinction that

density estimate/sampling ̸= generative modeling.
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In generative modeling, we not only want closeness in distribution, but we also want “new” samples that are
not simply corrupted replicas of previous data. And for this reason, convergence proofs are not the end of
the story; in fact, the core reason why ddpms enjoyed such success remains fundamentally open.
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