
Markov Chain, Monte Carlo, and Markov Chain Monte Carlo

Danny Chen1, ∗

1Department of Mathematics, Applied Mathematics, and Statistics,
Case Western Reserve University, Cleveland, Ohio 44106, USA

I. A MODEL THAT IS NEVER TRUE, BUT
SOMETIMES GREAT

In this section, we will introduce the concept of
Markov processes — dynamical systems that has
only the memory of its most recent past. More
specifically, we focus on the case where we have a
dynamical system in discrete time taking up discrete
(and finite) state spaces.

A. Probability Theory

Though the concept of probability and chance
dates back a long time, it is generally considered
that modern probability is developed by Pierre de
Fermat – yes, the Fermat who stated the well-known
theorem in the margin without a proof – and Blaise
Pascal in 1654. It was used to study games with ran-
domness in it, or to put it plainly, they want to win
money [1]. However, this field was never formally de-
veloped and there are a lot of paradoxes. Then, Rus-
sian mathematician Andrey Kolmogorov came along
and formalizes the notion of probability in his paper
General Theory of Measure and Probability Theory
in 1928[2] [3]. For the purpose of this project, we
will not necessarily dive into the measure-theoretic
background and stay within the realm where mea-
sure theory is not necessary — namely, we will work
with discrete (perhaps large, but discrete nonethe-
less) state-spaces.[4] Let’s begin the definition of a
probability space.

Definition 1. A probability space is a triple
(Ω,H,Pr) where

1. Ω is a set of possible outcomes

2. H is a σ-algebra of all possible events

3. Pr : H → R+ is a probability measure, that is,

• Pr(∅) = 0 and Pr(Ω) = 1

• Pr(∪nEn) =
∑

n Pr(En) for disjoint set
(En)’s.
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For our purposes, a random variable X will be
a variable that takes values in Ω at random with
probability specified by the measure Pr. Then, a
stochastic process {Xn : n ∈ N} is simply an indexed
collection of random variables.

From one probability space, we can create another
with the notion of conditional probability.

Definition 2. Let A be an event in H with a non-
zero probability, then we can define the probability
space (Ω,H,Pr(·|A)) where the new measure satisfies

Pr(B|A) =
Pr(A ∩B)

Pr(A)
(1)

for B ∈ H.

Intuitively, we fix the event B of occurring and
look at the probability of A occurring given that
B has happened. For example, if we’re rolling a fair
die, the probability of getting a “4” is 1/6. However,
if we condition on getting an even-valued outcome,
the conditional probability of getting a “4” becomes
1/3.

B. Markov Chain

Definition 3. A stochastic process {Xn : n ∈ N}
is a Markov Chain with state-space Ω and transition
matrix P ∈ R|Ω|×|Ω| if for x, y, zt−1, . . . , z1 ∈ Ω,

Pr(Xt+1 = y|Xt = x,Xt−1 = zt−1, . . . , X1 = z1)

= Pr(Xt+1 = y|Xt = x) = P (x, y) (2)

In plain words, this means that the future of the
process is dependent only of the most recent past
and not anything before that.
a. Example: Samantha’s acorn hunt After a

long nap in the winter, Samantha the squirrel found
three distinct locations — labeled 1,2, and 3 — each
with plentiful acorns. Everyday, Samantha will go
to a field, stay for the day, and either stay for an-
other day or move to another field for the next day.
Samantha has a few perks when picking which loca-
tion to go to next: 1) if she were to move, she always
goes in the order 1 → 2 → 3 → 1 → . . . , 2) she likes
some fields more than the other. If we let P ∈ R3×3

where the (x, y)-th entry denotes the probability of
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FIG. 1: One possible trajectory of Samantha the
squirrel.

transitioning from field x to field y, then P will look
like the following.

P =

p11 p12 0
0 p22 p23
p31 0 p33

 (3)

and since which field to go next must be probability
distribution, the sum of the rows must be one. For
example, we can choose the stochastic matrix to be
the following:

P =

0.3 0.7 0
0 0.5 0.5
0.2 0 0.8

 (4)

From this stochastic matrix, we can tell that Saman-
tha likes field 3 the most and less so for field 1. We
can simulate (which we will talk about in the next
section) Samantha’s movement as shown in Figure
1.
We can also do this analytically. Let’s suppose

Samantha is at field 1 the first day, that is, Pr(X1 =
1) = 1. Then, in the next day, Samantha will be at
field 1 with probability p11 and field 2 with proba-
bility p22 (and field 3 with probability 0). On can
also think of this as e⃗1P where e⃗k is a row vector of
zeros with 1 on the k-th entry. What about the day
after?

Pr(X3 = i|X1 = 1) (5)

=
∑
j∈ω

Pr(X3 = i,X2 = j|X1 = 1) (6)

=
∑
j

Pr(X3 = i|X2 = j,X1 = 1)Pr(X2 = j|X1 = 1)

(7)

=
∑
j

Pr(X3 = i|X2 = j)Pr(X2 = j|X1 = 1) (8)

where the last equality is by the Markov property.
Those who are a bit sharper will spot that this is the
(1, i)-th component of e⃗1P

2 where e⃗k is a row vector
of zeros with 1 on the k-th entry. Straightforwardly
by induction, we can see that

Pr(Xt = j|Xs = i) =
(
P t−s

)
(i, j) (9)

for any t > s. If we start with an initial distribution
µ0 =

∑
k qke⃗k, the distribution after t steps satisfies

µt = µt−1P = µ0P
t (10)

by linearity of matrix operations. More generally,
there is the Chapman-Kolmogorov equation that
states the following:

Pr(Xt = j|X1 = i)

=
∑
k

Pr(Xt = j|Xs = k)Pr(Xs = k|X1 = i) (11)

Suppose you haven’t been watching Samantha
closely for a while and you want to find her now
(for whatever reason, perhaps you have an acorn to
share). Knowing her preference and how she might
go from one field to another, how should you proceed
your search? Suppose Samantha can be in any one
of the fields to start according to some distribution
µ0, then t days later, we know she might be located
with respect to the distribution µt = µ0P

t. If we
take t → ∞, so

π = lim
t→∞

µt = lim
t→∞

µ0P
t (12)

then, what is π? Well, suppose that the limit exists,
we know that

π = πP (13)

So, it seems like this π, if it exists in the first place,
is 1) independent of µ0 and 2) an eigenvector of P
corresponding to eigenvalue 1. We will formalize this
later. But, in terms of Samantha the squirrel, we can
numerically probe at what this limit is. Suppose
Samantha starts off with the distribution

µ0 =
(
0.4 0.5 0.1

)
(14)

which was arbitrarily chosen. Then, the evolution of
the probabilities is shown in Figure 2.

To simplify notation from here on out, we will
introduce the following shorthand notations:

Prx(·) ≡ Pr(·|X0 = x), Ex(·) ≡ E(·|X0 = x) (15)

b. Irreducibility and Aperiodicity There are two
important properties that a Markov chain can have.



3

FIG. 2: Samantha was initialized arbitrary
distribution and the probability of being at each
field is calculated. It seems like the probability
converges to some π (in black), that is the left

eigenvector of P .

Definition 4. A chain P is irreducible if for any
two states x and y, there exists a t > 0 such that
P t(x, y) > 0.

We can think of a Markov Chain as random walk
on a graph. Each state is a vertex and an edge con-
nect two vertices if the transition probability is non-
zero. So, an irreducible Markov chain will mean that
any state is reachable from any other state, which
implies strong connectivity.

Definition 5. For a given chain P , define T (x) =
{t > 0 : P t(x, x) > 0}. The period of state x is
defined to be the greatest common divisor of the el-
ements in T (x). The chain is aperiodic if all states
of the chain has period 1.

Intuitively, if a chain is periodic, then for some
multiple of times t, 2t, 3t, and so on, there is a sub-
set of states the agent can be in (if we take the ran-
dom walk interpretation). As one can imagine, a
periodic Markov chain cannot converge to a single
distribution due to its periodicity.
The lemma below will be a good motivation for

talking about convergence.

Lemma 1. If P is aperiodic and irreducible, then
there is an integer r such that P r(x, y) > 0 for all
x, y ∈ Ω.

Proof. Use the following fact from number theory:
any set of non-negative integers that is closed un-
der addition and has a greatest common divisor of 1
contains all non-negative integers except for finitely
many numbers. Show that for any state x in an
aperiodic chain, T (x) is closed under addition. This

means that there exists some time τ for state x where
all times after it P τ (x, x) > 0. Furthermore, by ir-
reducibility, there is some time r for the agent to
potentially travel from one state to another. Taking
the maximum of all pairs (which exists because we’re
dealing with finite state-spaces) of τ + r gives the
time until all states have a positive probability.

Recall that our goal to explain some convergence
behavior to the left eigenvector corresponding to
eigenvalue 1. So, before anything, we must prove
that the eigenvector exists, which is stated as the
lemma below.

Lemma 2. If a chain P is irreducible, then there is
a unique distribution π on Ω such that πP = π.

Proof. First, let τz = min{t > 0 : Xt = z}. Use
the definition of irreducibility to show that for suffi-
ciently large r, there is an ϵ such that for any y ∈ Ω,

Prz(τy > kr) ≤ (1− ϵ)Prz (τy > (k − 1)r) (16)

Use this fact and the union bound to show that
Ez(τy) < ∞.

Then, fix a particular z ∈ Ω. Define π̃(y) to be
the expected number of visits to y before returning
to z:

π̃(y) =

∞∑
t=0

Prz (Xt = y, τz > t) (17)

And show, by expanding the summation, that p̃i(y)
is stationary.

π̃ = π̃P (18)

Lastly, since we want a probability measure, we get
π by normalizing π̃.

π(x) =
π̃(x)∑
y∈Ω π̃(y)

=
π̃(x)

Ez(τz)
=

1

Ex(τx)
(19)

This shows the existence of π. To see the uniqueness,
let h be some function. We know if π = πP exist,
there must be an h satisfying h = Ph. Show that
h must be constant by contradiction. This implies
that the eigenspace corresponding to eigenvalue 1
has dimension 1, and the left eigenvector π is unique.

c. History of Markov Chains Markov chains
are invented and developed by Andrey Markov. The
study of Markov Chains was motivated by the abun-
dance of assumptions that the random variables are
independent. in 1738, Jacob Bernoulli proved the
weak law of large numbers for independent binary
variables. Simeon Poisson, a century later, general-
ized this to binary variables that are independent,
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but not necessarily identically distributed. Pafnuty
Chebyshev, Markov’s teacher, generalized the law
of large numbers of independent random variables
with bounded moments in 1867. P.A. Nekrasoc, an-
other mathematician working on the weak law of
large numbers at the time, stated in his 1902 paper:
“independence is a necessary condition for the law of
large numbers.” Such a claim motivated Markov’s
work on dependent random variables, which led to
the theory of Markov chains [5].

C. Chain Mixing

Now, we know that an irreducible, aperiodic
Markov chain has a stationary distribution. How-
ever, we have not characterized how to achieve the
stationary distribution. Here, we will discuss the
phenomenon that: if we let the chain run for a suf-
ficiently long time, the chain converges towards the
stationary distribution. Before that, we must define
what “moving towards” mean by defining a metric
on the space of distributions.

Definition 6. The total variation distance between
two distribution µ and ν on Ω is defined by

∥µ− ν∥TV = max
A⊂Ω

|µ(A)− ν(A)| (20)

Now, we will show that the total variation dis-
tance between the distribution at any time t and
the stationary distribution decreases in the limit as
t → ∞.

Theroem 1. Let P be an irreducible, aperiodic
Markov chain with stationary distribution π. Then,
there are constants α ∈ (0, 1) and C > 0 such that

max
x∈Ω

∥P t(x, ·)− π∥TV ≤ Cαt (21)

Proof. First, by Lemma 1, we know that there is an
r such that P r(x, y) > 0 for all x, y ∈ Ω. So, for
some sufficiently small δ > 0,

P r(x, y) ≥ δπ(y) (22)

Let Π ∈ R|Ω|×|Ω| be a matrix with rows that are π,
and define θ = 1 − δ. Then, let Q be a stochastic
matrix that satisfies

P r = (1− θ)Π + θQ (23)

Then, by induction, show that

P rk = (1− θk)Π + θkQk (24)

Multiply by P j and rearranging to get the following
form:

P rk+j −Π = θk(QkP j −Π) (25)

Focus on one particular row x. By set up of Q,
we can arrive at the following, which implies the
theorem.

∥P rk+j(x, ·)− π∥TV ≤ θk (26)

II. GETTING COMPUTATIONAL

This section will introduce the idea ofMonte Carlo
computations, a class of methods that estimate some
desired variable by probabilistically sampling from
some distribution. The justification of this is simple:
the (strong) law of large numbers!

Theroem 2 ([6]). Let (Xi)
n
i=1 be a collection of

pairwise independent and identically distributed ran-
dom variables with a finite mean and variance.
Then,

1

n

∑
i

Xi
a.s.−−→ E[X] (27)

as n → 0; that is, the average over the samples con-
verges almost surely (with an exception of a set with
measure zero) to the expectation.

A. Buffet’s needle problem

Georges Louis Leclerc, Comte de Buffon — a
French mathematician — first proposed the follow-
ing problem in 1777: Suppose there is a board with
parallel stripes on in. There is also a needle, whose
length is the same as the space between the paral-
lel strips. Drop the needle onto the board with no
particular method. What is the probability that the
needle will be touching one of the parallel lines?

a. Analytic Solution We can solve this prob-
lem with geometry and basic probability theory.
Whether the needle touches the parallel line depends
on two things: the distance from the midpoint of the
needle to the closest line (X) and the angle formed
by (the extended) needle and the line (θ). The nee-
dle will intersect the line if the hypotenuse of the
triangle — the triangle formed by the (extended)
needle, the line, and the altitude from the midpoint
to the line — is less than half of the gap between
the lines (L/2). In mathematical language:

X <
L

2
cos θ (28)

We will assume the needle is uniformly dropped. So,
X is some value between 0 and L/2, θ is some value
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FIG. 3: Simulation of the Buffon’s needle problem.
The black dashed line is a π/2, the value we got

analytically.

between 0 and π/2. So, we can carry out the follow-
ing computation.

Pr

(
X <

L

2
cos θ

)
=

∫ π/2

0

∫ L cos θ/2

0

4

Lπ
dxdθ

(29)

=
2

π

∫ π/2

0

cos θdθ (30)

=
2

π
(31)

b. Sampling Solution The analytic solution is
elegant, but what if we’re not good at geometry?
Intuitively, we can test it out ourselves. Find a nee-
dle (there must be one in your house), draw parallel
lines that has gaps the same size as the needle, and
start dropping it! Keep track of the total number
of drops and the number of times you successfully
get the needle to intersect the line. Since I’m in col-
lege and I don’t have a needle handy, I will use a
computer to simulate the dropping. The results are
shown in Figure 3. We can see that the more times
we toss, we converge towards the true value we got
from the analytical calculations. In fact, Augustus
De Morgan and his student had tried to use this
method to estimate the value of π. You can imagine
how painful it is without a computer!

B. Monte Carlo methods

Monte Carlo methods was invented by John von
Neumann and Stanislaw Ulam during World War II.
Stanislaw Ulam initially used it to develop nuclear
weapons at Los Almos National Laboratory. At that

time, computing using deterministic method is dif-
ficult and expensive. That is how Ulam found a
way to randomization to perform calculations. He
described his thoughts to von Neumann, and they
both agreed that it is an incredibly promising ap-
proach — it is so good that they shouldn’t let other
people know! They’re colleague Nicholas Metropolis
(who we will see later) suggested the name Monte
Carlo: the casino in Monte Carlo, Monaco where
Ulam’s uncle would borrow money from his relatives
to gamble. Quickly, this method became crucial for
the Manhattan project and for many scientific and
engineering disciplines after the war [7].

a. Pseudorandomness Before we go dig into
Monte Carlo methods, let’s step back a bit and
think: where do the random numbers come from?
We don’t know how to generate truly random num-
bers, so we reside to pseudorandom number genera-
tors. As the name implies, it is a machine (algo-
rithm) that generates a deterministic sequence of
numbers that behaves randomly. This is a topic that
lies deeply in the field of theoretical computer science
and has significant implications in, well, anywhere
that requires random computation. Below gives the
definition of a pseudorandom number generator.

Definition 7 ([8]). A pseudorandom number gener-
ator is a deterministic function f defined on a subset
U ⊆ {0, 1}k into {0, 1}k, where k < l, which maps a
seed X ∈ U to a deterministic sequence of l bits:

f(X) = (x1, x2, . . . , xl) (32)

What might this look like? A well-known one is
the Blum Blum Shub generator. Let n be a product
of two primes p and q that are equal to 3 modulo 4
with k-bits. Seeds are ordered X0, X1, . . . and the
generation follows the following recurrence:

Xi+1 = X2
i mod n (33)

This generates a sequence of 0s and 1s that “looks”
random, which we can then use to build other ran-
dom numbers. However, what “random enough”
was, and still is, under debate. Here, we will in-
troduce Andrew Yao’s, a Turing award (the Nobel
prize equivalent in computer science) winner for his
work in pseudorandomness, formulation of what it
means to be random.

Theroem 3 ([9, 10]). Let {gn} be a set of
polynomial-time computable family of functions,
where gn : {0, 1}n → {0, 1}m and m = m(n) > n.
Then, a (δ(n), s(n))-pseudorandom generator is a
machine that for every probabilistic algorithm A run-
ning in time s(n) and for large enough n,∣∣Pry∈{0,1}m (A(y) = 1)− Prx∈{0,1}n (A(gn(x)) = 1)

∣∣ ≤ δ(n)

(34)
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Let’s break this definition apart term-by-term.
The function g is the random number generator. We
require it to be computable in polynomial-time: so
the generation must be simple enough for anyone’s
personal computer. We say that the generated num-
ber is random enough if, for any algorithm A that
needs the random number, the difference in output
of A using a truly random string and a pseudo-
random string is bounded above by some δ. Ba-
sically, if for any practical purposes, we cannot dis-
tinguish true random algorithm from pseudorandom
ones, then the pseudorandom numbers are random
enough.
b. Inverse Sampling Inverse sampling is one

of the most simple, but also the most restrictive
Monte Carlo algorithms. This will motivate the
next section, which deals with a much more pow-
erful paradigm. The idea behind inverse sampling is
quite simple. Again, we will detour and talk about
transformation of random variables. Let X be some
random variable, and define Y = T (X) for some
monotone function T . Then, we can express the dis-
tribution of Y in terms of the distribution of X.

Pr(Y < y) = Pr(T (X) < y) = Pr(X < T−1(y))
(35)

where the inverse is well-defined by monotonicity.
Now, notice that any random variable X is simply
a monotonic function transformation away from the
uniform distribution. Namely, consider a uniformly
distributed random variable U between [0, 1], which
we now know how to generate. And suppose there is
a random variable X with a cumulative distribution
FX that we want to sample from. Notice that we
can define X = FX(U):

Pr(X < x) = Pr(FX(U) < x) = Pr(U < F−1
X (x))

(36)

and since FX : X → [0, 1] where X is the support of
X. Then, F−1

X : [0, 1] → X . This gives us an algo-
rithm! To generate samples from X, simply gener-
ate a uniform random sample u ∼ U and compute
F−1
X (u) to get the sample for X.
This method works for any distribution with an

easily invertible distribution function, so: any vari-
ables defined on discrete state-spaces or a handful
of continuous variables. Since we’re working with
finite state-spaces, let’s talk about the first case. If
the state-space is relatively small — we’re talking
perhaps 106 states — doing this inversion is not dif-
ficult. However, if the state space is large, sometimes
even too large to store in our computers (and sur-
prisingly, most discrete problems we care about is
like this), and there is no sparsity constraint (so we
do not know a priori if there are entries with zero

probability), the inverse sampling procedure is sim-
ply not feasible.

III. MARKOV CHAIN MONTE CARLO

Markov Chain Monte Carlo, or MCMC for short,
is a type of Monte Carlo algorithms that combines
the two topics we talked about before. Intuitively,
we know that sampling from Markov chains is sim-
ple: we can generate new samples each step given the
current state. So, we use the property that Markov
chains mix into stationary distributions to create a
chain that converges towards our desired distribu-
tion. Below we give two well-known MCMC algo-
rithms: Metropolis-Hastings and Glauber Dynamics
(or sometimes known as Gibbs sampling).

A. Metropolis-Hastings Algorithm

As mentioned before, Metropolis was one of the
scientists working in the Manhattan project. A bit
later, him, along with Rosenbluth, Teller, and Teller
gave the first description of this type of algorithm
for a specific distribution in 1953 [11]. Then, Hast-
ings extended his technique to arbitrary distribu-
tions, hence the name Metropolis-Hastings [12].

Suppose there is some distribution π that we want
to sample from, the goal is to construct a chain
P such that π is the stationary distribution of P .
We will do this indirectly by constructing another
Markov chain Ψ that will help us traverse the state-
space. The chain Ψ can be an arbitrary irreducible
chain, and we will let P take the following dynamic:

P (x, y) =

{
Ψ(x, y)

(
π(y)Ψ(y,x)
π(x)Ψ(x,y) ∧ 1

)
if y ̸= x

1−
∑

z∈Ω\{x} P (x, z) if y = x

(37)

The chain above describes theMetropolis chain. One
can think of this as a accept-reject scheme: generate
a sample from Ψ, move to the new state with proba-
bility defined by the quotient term above, otherwise
stay at the current location.

To show that this in fact converges towards the
right distribution, we need to show π = πP . We can
actually show a stronger condition: that π satisfies
detailed balance:

π(x)P (x, y) = π(y)P (y, x) (38)

for every x, y ∈ Ω. For the case of y ̸= x, we have
the following:

π(x)P (x, y) = (π(y)Ψ(y, x) ∧ π(x)Ψ(x, y)) (39)
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which quite clearly gives π(y)P (y, x). Then, by con-
servation of probability, the case of y = x must also
hold. By satisfying detailed balance, we know that
π is stationary. Since Ψ is assumed to be irreducible,
we know that π is unique and the chain specified by
P will converge towards its stationary distribution,
namely, π.

B. Glauber Dynamics

Glauber dynamics, or more commonly called
Gibbs sampling in the statistics literature, is another
common MCMC method. It is usually used for ef-
ficient inference over high dimensional spaces, and
unlike Metropolis-Hastings algorithm, its formula-
tion can change drastically from one context to an-
other. In honor of its inventor, who are statistical
physicists, we will approach the introduction with a
more statistical physics setting.
Let V and S be finite sets, and let Ω = SV . One

can visualize this in terms of a graph where V is the
set of vertices and S are values each v ∈ V can take.
Let π be some distribution over Ω that we wish to
sample over. Furthermore, for x ∈ Ω and v ∈ V ,
define the quantity Ω(x, v) as the following:

Ω(x, v) = {y ∈ Ω : y(w) = x(w) ∀w ̸= v} (40)

Then, the Glauber dynamics for π obeys the follow-
ing rule: choose a v ∈ V uniformly at random, then
let the transition from state x to state y occur with
probability π(y)/π(Ω(x, v)) ∨ 0. Alternatively, we
can write the transition matrix P as below:

P (x, y) =
1

|V |
∑
v∈V

(
π(y)

π(Ω(x, v))
∨ 0

)
(41)

Again, let’s show that it satisfies detailed balance
to justify its convergence. First, notice that for all
y ∈ Ω(x, v), that is, for all y such that P (x, y) is not
zero, Ω(x, v) = Ω(y, v). So,

π(x)P (x, y) =
1

|V |
∑
v∈V

(
π(y)π(x)

π(Ω(x, v))
∨ 0

)
(42)

=
1

|V |
∑
v∈V

(
π(x)π(y)

π(Ω(y, v))
∨ 0

)
(43)

= π(y)P (y, x) (44)

If π(x) > 0 for all x ∈ Ω, then the chain is irre-
ducible and we will converge towards the stationary
distribution, as guaranteed in Theorem 1.

C. Example: Ising Model

To make things concrete, we will consider the clas-
sic Ising model from statistical physics. This model

was proposed by Wilhelm Lenz in the 1920s for as
a simplified version for ferromagnet — the kind of
magnetism associated with iron and nickel. Lenz’s
student Ernst Ising chose to focus on this model for
his PhD dissertation and made significant progress.
It turns out that 2D Ising models that we will intro-
duce today, though understood now, fueled many
other fields in physics, math, and computer science.

The Ising model is a spin system. There is a graph
G = (V,E), and for each vertex, there is a spin (tak-
ing values {−1, 1}) associated with it. In essence,
there is a probability distribution over {−1, 1}V . For
every state of the system, σ ∈ Ω, there is an energy,
or Hamiltonian, associated with it defined by the
following function:

H(σ) = −
∑

(v,w)∈E

σ(v)σ(w) (45)

So, the energy increases if adjacent vertices have op-
posite spin. Then, the Gibbs distribution with re-
spect to Hamiltonian H is defined as the following:

µ(σ) =
1

Z(β)
e−βH(σ) (46)

where Z(β) is called the partition function, which
normalizes µ into a valid probability distribution.
The parameter β corresponds to the inverse of the
temperature of the system. If temperature if infinite
(β = 0), we can see that all terms become 1 and µ is
simply the uniform distribution over bit strings. As
β → ∞, or as temperature tends towards 0 (in the
adiabatic limit, by approaching 0 infinitely slowly),
the distribution approaches the lowest energy con-
figuration. In fact, this technique is called simulated
annealing and is used to solve many (combinatorial)
optimization problems that are difficult to compute.

However, the interesting phenomenon that arises
in the Ising model is phase transition, which is simi-
lar to (perhaps, is exactly) bifurcation in dynamical
systems theory. It is when some quantity associated
with the system go through an abrupt change, e.g.
a discontinuity in the function or in its 1st or 2nd
derivative. Ising initially studied the 1-dimensional
system where each vertex is adjacent to two other
vertices in a way that forms a ring, and found no
phase transition. However, in 1944, Lars Onsager
found a phase transition in the 2-dimensional model.
Since then, people have tried to study phase transi-
tion in higher dimensional models [13].

Figure 4 shows both simulation technique on the
Ising model on a 50 × 50 square lattice with closed
boundary conditions (torus). We can see the transi-
tion from something structured to something com-
pletely disordered. This type of phase transition.
There are a total of 2500 vertices here, meaning that
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FIG. 4: Simulation of the Ising model using both Metropolis-Hastings and Glauber dyanmics at different
temperatures. (Left) Low tempature regime with low noise. (Middle) Critical regime with noisy

structure. (Right) High temperature regime with complete disorder.

there are actually 22500 different configurations that
can happen. That is literally more than anything
in the world! This shows the capability of MCMC
methods: it gives us tools to computationally (and
mathematically) analyze gigantic systems. This has
allowed many calculations that were needed for sci-
ence and engineering to happen, and is an invaluable

tool for both theorists and experimentalists alike.

CODE

All simulations in this project are written
by me! You can find the code here: https:
//github.com/dannychen0830/RandomCode/blob/
main/MATH302demo.m.
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